Design and synthesis of the first triply twisted Möbius annulene.
暂无分享,去创建一个
K. Rissanen | R. Herges | F. Topić | Y. Okamoto | G. R. Schaller | Jun Shen
[1] Gaston R. Schaller. Design und Synthese Moebius-topologischer und Moebius-aromatischer Kohlenwasserstoffe , 2013 .
[2] R. Herges,et al. Möbius molecules with twists and writhes. , 2013, Chemical communications.
[3] J. Luis,et al. Evaluation of the nonlinear optical properties for an expanded porphyrin Hückel-Möbius aromaticity switch. , 2012, The Journal of chemical physics.
[4] Yong-Qing Qiu,et al. Spiral intramolecular charge transfer and large first hyperpolarizability in Möbius cyclacenes: new insight into the localized π electrons. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.
[5] L. Ram-Mohan,et al. Quantum mechanics on a Möbius ring: Energy levels, symmetry, optical transitions, and level splitting in a magnetic field , 2012 .
[6] Miquel Torrent-Sucarrat,et al. Evaluation of the Nonlinear Optical Properties for Annulenes with Hückel and Möbius Topologies. , 2011, Journal of chemical theory and computation.
[7] A. Osuka,et al. Expanded porphyrins: intriguing structures, electronic properties, and reactivities. , 2011, Angewandte Chemie.
[8] M. Stępień,et al. Figure eights, Möbius bands, and more: conformation and aromaticity of porphyrinoids. , 2011, Angewandte Chemie.
[9] R. Herges,et al. Stability and aromaticity of charged Möbius[4n]annulenes. , 2011, The Journal of organic chemistry.
[10] Xiang Zhang,et al. Optical Möbius symmetry in metamaterials. , 2010, Physical review letters.
[11] Jong Min Lim,et al. Möbius antiaromatic bisphosphorus complexes of [30]hexaphyrins. , 2010, Angewandte Chemie.
[12] R. Herges,et al. The [13]annulene cation is a stable Möbius annulene cation. , 2010, Organic letters.
[13] Jong Min Lim,et al. 6 Photophysics and Photochemistry of Various Expanded Porphyrins , 2010 .
[14] S. Grimme,et al. Is the [9]annulene cation a Möbius annulene? , 2009, Angewandte Chemie.
[15] Henry S Rzepa,et al. The geometry and electronic topology of higher-order charged Möbius annulenes. , 2009, The journal of physical chemistry. A.
[16] A. Osuka,et al. Möbius aromaticity and antiaromaticity in expanded porphyrins. , 2009, Nature chemistry.
[17] M. Mauksch,et al. Neutral Möbius Aromatics: Derivatives of the Pyrrole Congener Aza[11]annulene as Promising Synthetic Targets† , 2008 .
[18] E. E. Fenlon,et al. Open Problems in Chemical Topology , 2008 .
[19] Jong Min Lim,et al. Unambiguous identification of Möbius aromaticity for meso-aryl-substituted [28]hexaphyrins(1.1.1.1.1.1). , 2008, Journal of the American Chemical Society.
[20] H. Rzepa,et al. Intrinsically chiral aromaticity. Rules incorporating linking number, twist, and writhe for higher-twist Möbius annulenes. , 2008, Journal of the American Chemical Society.
[21] Z. Ciunik,et al. Palladium vacataporphyrin reveals conformational rearrangements involving Hückel and Möbius macrocyclic topologies. , 2008, Journal of the American Chemical Society.
[22] R. Herges. Aromatics with a twist , 2008 .
[23] R. Herges,et al. The [12]annulene global minimum. , 2008, The Journal of organic chemistry.
[24] R. Herges. Organic chemistry: Aromatics with a twist , 2007, Nature.
[25] Rainer Herges,et al. Topology in chemistry: designing Möbius molecules. , 2006, Chemical reviews.
[26] C. Näther,et al. Synthesis and properties of the first Möbius annulenes. , 2006, Chemistry.
[27] H. Rzepa. Möbius aromaticity and delocalization. , 2005, Chemical reviews.
[28] H. Rzepa. A double-twist Möbius-aromatic conformation of [14]annulene. , 2005, Organic letters.
[29] Ryan Pemberton,et al. Möbius aromaticity in [12]annulene: cis-trans isomerization via twist-coupled bond shifting. , 2005, Journal of the American Chemical Society.
[30] R. Herges,et al. Synthesis of a Möbius aromatic hydrocarbon , 2003, Nature.
[31] D. Lemal. Organic chemistry: Aromatics do the twist , 2003, Nature.
[32] C. Isborn,et al. Aromaticity with a twist: Möbius [4n]annulenes. , 2002, Organic letters.
[33] Patrick W. Fowler,et al. Hückel spectra of Möbius π systems , 2002 .
[34] M. Troyer,et al. Topologically protected quantum bits using Josephson junction arrays , 2001, Nature.
[35] K. Klenin,et al. Computation of writhe in modeling of supercoiled DNA. , 2000, Biopolymers.
[36] R. Schmieder,et al. Topologische Stereochemie und Chiralität , 2000 .
[37] John F. Krebs,et al. Violently Twisted and Strained Organic Molecules: A Descriptor System for Simple Coronoid Aromatics with a Moebius Half-Twist and Semiempirical Calculations on the Moebius Analogs of Coronene , 1994, J. Chem. Inf. Comput. Sci..
[38] David M. Walba,et al. A Topological Hierarchy of Molecular Chirality and other Tidbits in Topological Stereochemistry , 1991 .
[39] D. Lilley. DNA supercoiling and DNA structure. , 1986, Biochemical Society transactions.
[40] F. B. Fuller. Decomposition of the linking number of a closed ribbon: A problem from molecular biology. , 1978, Proceedings of the National Academy of Sciences of the United States of America.
[41] F. Crick. Linking numbers and nucleosomes. , 1976, Proceedings of the National Academy of Sciences of the United States of America.
[42] F. B. Fuller. The writhing number of a space curve. , 1971, Proceedings of the National Academy of Sciences of the United States of America.
[43] Howard E. Zimmerman,et al. On Molecular Orbital Correlation Diagrams, the Occurrence of Möbius Systems in Cyclization Reactions, and Factors Controlling Ground- and Excited-State Reactions. I , 1966 .
[44] C. Djerassi,et al. Inherently Dissymmetric Chromophores and Circular Dichroism. II , 1962 .
[45] Boris Musulin,et al. A Mnemonic Device for Molecular Orbital Energies , 1953 .
[46] E. Hückel,et al. Quantentheoretische Beiträge zum Problem der aromatischen und ungesättigten Verbindungen. III , 1932 .
[47] E. Hückel,et al. Quantentheoretische Beiträge zum Benzolproblem , 1931 .
[48] J. V. Lenthe,et al. Möbius aromaticity in small [n] trans‐annulenes? , 2001 .
[49] D. Lilley. DNA supercoiling. , 1986, Biochemical Society transactions.
[50] E. Heilbronner,et al. Hűckel molecular orbitals of Mőbius-type conformations of annulenes , 1964 .
[51] G. Călugăreanu. Sur les classes d'isotopie des noeuds tridimensionnels et leurs invariants , 1961 .
[52] L. B. Ioffe,et al. Topologically protected quantum bits from Josephson junction arrays , 2022 .