Learnable tabu search guided by estimation of distribution for maximum diversity problems

This paper presents a learnable tabu search (TS) guided by estimation of distribution algorithm (EDA), called LTS-EDA, for maximum diversity problem. The LTS-EDA introduces knowledge model and can extract knowledge during the search process of TS, and thus it adopts dual or cooperative evolution/search structure, consisting of probabilistic model space in clustered EDA and solution space searched by TS. The clustered EDA, as a learnable constructive method, is used to create a new starting solution, and the simple TS, as an improvement method, attempts to improve the solution created by the clustered EDA in the LTS-EDA. A distinguishing feature of the LTS-EDA is the usage of the clustered EDA with effective linkage learning to guide TS. In the clustered EDA, different clusters (models) focus on different substructures, and the combination of information from different clusters (models) effectively combines substructures. The LTS-EDA is tested on 50 large size benchmark problems with the size ranging from 2,000 to 5,000. Simulation results show that the LTS-EDA is better than the advanced algorithms proposed recently.

[1]  Gintaras Palubeckis,et al.  Multistart Tabu Search Strategies for the Unconstrained Binary Quadratic Optimization Problem , 2004, Ann. Oper. Res..

[2]  Pedro Larrañaga,et al.  Globally Multimodal Problem Optimization Via an Estimation of Distribution Algorithm Based on Unsupervised Learning of Bayesian Networks , 2005, Evolutionary Computation.

[3]  Heinz Muehlenbein,et al.  The Bivariate Marginal Distribution , 1999 .

[4]  Qingfu Zhang,et al.  Guest Editorial: Special Issue on Evolutionary Algorithms Based on Probabilistic Models , 2009, IEEE Trans. Evol. Comput..

[5]  Jesús García,et al.  On the Model-Building Issue of Multi-Objective Estimation of Distribution Algorithms , 2009, HAIS.

[6]  Shengyao Wang,et al.  An Effective Estimation of Distribution Algorithm for Multi-track Train Scheduling Problem , 2014, ICIC.

[7]  Yalan Zhou,et al.  Discrete particle swarm optimization based on estimation of distribution for polygonal approximation problems , 2009, Expert Syst. Appl..

[8]  Roberto Cordone,et al.  Comparing local search metaheuristics for the maximum diversity problem , 2011, J. Oper. Res. Soc..

[9]  Yunong Zhang,et al.  Competitive Hopfield Network Combined With Estimation of Distribution for Maximum Diversity Problems , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[10]  Paul A. Viola,et al.  MIMIC: Finding Optima by Estimating Probability Densities , 1996, NIPS.

[11]  Shumeet Baluja,et al.  Fast Probabilistic Modeling for Combinatorial Optimization , 1998, AAAI/IAAI.

[12]  Pedro Larrañaga,et al.  Research topics in discrete estimation of distribution algorithms based on factorizations , 2009, Memetic Comput..

[13]  Chen Fang,et al.  An effective shuffled frog-leaping algorithm for multi-mode resource-constrained project scheduling problem , 2011, Inf. Sci..

[14]  Fred W. Glover,et al.  Multistart Tabu Search and Diversification Strategies for the Quadratic Assignment Problem , 2009, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[15]  Fred W. Glover,et al.  A hybrid metaheuristic approach to solving the UBQP problem , 2010, Eur. J. Oper. Res..

[16]  Martin Pelikan,et al.  Analyzing Probabilistic Models in Hierarchical BOA , 2009, IEEE Transactions on Evolutionary Computation.

[17]  Kengo Katayama,et al.  An Evolutionary Approach for the Maximum Diversity Problem , 2005 .

[18]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[19]  Ulrich Dorndorf,et al.  A Branch-and-Bound Algorithm , 2002 .

[20]  Qingfu Zhang,et al.  Combinations of estimation of distribution algorithms and other techniques , 2007, Int. J. Autom. Comput..

[21]  Aurora Trinidad Ramirez Pozo,et al.  Effective Linkage Learning Using Low-Order Statistics and Clustering , 2009, IEEE Transactions on Evolutionary Computation.

[22]  David E. Goldberg,et al.  The compact genetic algorithm , 1999, IEEE Trans. Evol. Comput..

[23]  F. Glover,et al.  Analyzing and Modeling the Maximum Diversity Problem by Zero‐One Programming* , 1993 .

[24]  Gintaras Palubeckis,et al.  Iterated Tabu Search for the Unconstrained Binary Quadratic Optimization Problem , 2006, Informatica.

[25]  Fred W. Glover,et al.  Diversification-driven tabu search for unconstrained binary quadratic problems , 2010, 4OR.

[26]  J. M. Moreno-Vega,et al.  Advanced Multi-start Methods , 2010 .

[27]  Carlos García-Martínez,et al.  Hybrid metaheuristics with evolutionary algorithms specializing in intensification and diversification: Overview and progress report , 2010, Comput. Oper. Res..

[28]  Jin-Kao Hao,et al.  Memetic Algorithms in Discrete Optimization , 2012, Handbook of Memetic Algorithms.

[29]  Ram Dantu,et al.  An Impatient Evolutionary Algorithm With Probabilistic Tabu Search for Unified Solution of Some NP-Hard Problems in Graph and Set Theory via Clique Finding , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[30]  Francisco Herrera,et al.  Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power , 2010, Inf. Sci..

[31]  Jie Chen,et al.  Hybridizing Differential Evolution and Particle Swarm Optimization to Design Powerful Optimizers: A Review and Taxonomy , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[32]  Ye Xu,et al.  An effective shuffled frog-leaping algorithm for the flexible job-shop scheduling problem , 2013, 2013 IEEE Symposium on Computational Intelligence in Control and Automation (CICA).

[33]  Abraham Duarte,et al.  Tabu search and GRASP for the maximum diversity problem , 2007, Eur. J. Oper. Res..

[34]  Carlos García-Martínez,et al.  Iterated greedy for the maximum diversity problem , 2011, Eur. J. Oper. Res..

[35]  Shumeet Baluja,et al.  Using Optimal Dependency-Trees for Combinational Optimization , 1997, ICML.

[36]  Micael Gallego,et al.  Heuristics and metaheuristics for the maximum diversity problem , 2013, J. Heuristics.

[37]  Micael Gallego,et al.  Hybrid heuristics for the maximum diversity problem , 2009, Comput. Optim. Appl..

[38]  M. Pelikán,et al.  The Bivariate Marginal Distribution Algorithm , 1999 .

[39]  Qingfu Zhang,et al.  Evolutionary Algorithms Refining a Heuristic: A Hybrid Method for Shared-Path Protections in WDM Networks Under SRLG Constraints , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[40]  Alexandre Plastino,et al.  GRASP with Path-Relinking for the Maximum Diversity Problem , 2005, WEA.

[41]  Micael Gallego,et al.  A branch and bound algorithm for the maximum diversity problem , 2010, Eur. J. Oper. Res..

[42]  S. Baluja,et al.  Using Optimal Dependency-Trees for Combinatorial Optimization: Learning the Structure of the Search Space , 1997 .

[43]  G. Harik Linkage Learning via Probabilistic Modeling in the ECGA , 1999 .

[44]  Jin-Kao Hao,et al.  A memetic algorithm for graph coloring , 2010, Eur. J. Oper. Res..

[45]  Qingfu Zhang,et al.  Iterated Local Search with Guided Mutation , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[46]  Fred W. Glover,et al.  A unified modeling and solution framework for combinatorial optimization problems , 2004, OR Spectr..

[47]  Chen Fang,et al.  An effective estimation of distribution algorithm for the multi-mode resource-constrained project scheduling problem , 2012, Comput. Oper. Res..

[48]  David E. Goldberg,et al.  Linkage Problem, Distribution Estimation, and Bayesian Networks , 2000, Evolutionary Computation.

[49]  Roberto Cordone,et al.  Tabu Search versus GRASP for the maximum diversity problem , 2008, 4OR.

[50]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[51]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[52]  Heinz Mühlenbein,et al.  Schemata, Distributions and Graphical Models in Evolutionary Optimization , 1999, J. Heuristics.

[53]  Nenad Mladenovic,et al.  Variable neighborhood search for the heaviest k-subgraph , 2009, Comput. Oper. Res..

[54]  Luiz Satoru Ochi,et al.  New heuristics for the maximum diversity problem , 2007, J. Heuristics.

[55]  Gintaras Palubeckis,et al.  Iterated tabu search for the maximum diversity problem , 2007, Appl. Math. Comput..

[56]  Qingfu Zhang,et al.  An evolutionary algorithm with guided mutation for the maximum clique problem , 2005, IEEE Transactions on Evolutionary Computation.

[57]  Michael Defoin-Platel,et al.  Quantum-Inspired Evolutionary Algorithm: A Multimodel EDA , 2009, IEEE Transactions on Evolutionary Computation.

[58]  Shumeet Baluja,et al.  A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning , 1994 .