Application of speckle and (multi-object) multi-frame blind deconvolution techniques on imaging and imaging spectropolarimetric data

Context. Ground-based imaging and imaging spectropolarimetric data are often subjected to post-facto reconstruction techniq ues to improve the spatial resolution. Aims. We test the effects of reconstruction techniques on two-dimensional data to determine the best approach to improve our data. Methods. We obtained an 1-hour time-series of spectropolarimetric data in the Fei line at 630.25 nm with the Gottingen Fabry-Perot Interferometer (FPI) that are accompanied by imaging data in the blue continuum at 431.3 nm and Caii H at 396.85 nm. We apply both speckle and (multi-object) multi-frame blind deconvolution ((MO)MFBD) techniques. We use the "Gottingen" speckle and speckle deconvolution codes and the MOMFBD code in the implementation of Van Noort et al. (2005). We compare the resulting spatial resolution and investigate the impact of the image reconstruction on spectral characteristics of the Gottingen FPI da ta. Results. The speckle reconstruction and MFBD perform similar for our imaging data with nearly identical intensity contrasts. MFBD provides a better and more homogeneous spatial resolution at the shortest wavelength when applied to a series of image bursts. The MOMFBD and speckle deconvolution of the intensity spectra lead to similar results, but our choice of settings for the MOMFBD yields an intensity contrast smaller by about 2 % at a comparable spatial resolution. None of the reconstruction techniq ues introduces significant artifacts in the intensity spectra. The speckle deconvolution (MOMFBD) has a rms noise in Stokes V/I of 0.32 % (0.20 %). The deconvolved spectra thus require a high significance thr eshold of about 1.0 % to separate noise peaks from true signal. A com- parison to spectra with a significantly higher signal-to-no ise (S/N) ratio and to spectra from a magneto-hydrodynamical simulation reveals that the Gottingen FPI can only detect about 30 % of the polarization signal present in quiet Sun areas. The distr ibution of NCP values for the speckle-deconvolved data matches that of observations with higher S/N better than MOMFBD, but shows seemingly artificially sharp boundaries and unexpected changes of the sign. Conclusions. For our imaging data, both MFBD and speckle reconstruction are equivalent, with a slightly better and more stable performance of MFBD. For the spectropolarimetric data, the higher intensity contrast of the speckle deconvolution is b alanced by the smaller amplification of the noise level in the MOMFBD at a comparable spatial resolution. The noise level prevents the de- tection of weak and diffuse magnetic fields. Future e fforts should be directed to improve the S/N of the Gottingen FPI spectra for spectropolarimetric observations to lower the final signifi cance thresholds.

[1]  J. V. Ramsay,et al.  A new tunable filter with a very narrow pass-band , 1970 .

[2]  K. Knox,et al.  Recovery of Images from Atmospherically Degraded Short-Exposure Photographs , 1974 .

[3]  G. P. Weigelt,et al.  Modified astronomical speckle interferometry “speckle masking” , 1977 .

[4]  R. Loughhead,et al.  Instrumental profile of a triple Fabry-Perot interferometer for use in solar spectroscopy. , 1978, Applied optics.

[5]  Ingemar Furenlid,et al.  Solar flux atlas from 296 to 1300 nm , 1985 .

[6]  O. von der Lühe,et al.  Estimating Fried’s parameter from a time series of an arbitrary resolved object imaged through atmospheric turbulence , 1984 .

[7]  J. Almeida,et al.  Observation and interpretation of the asymmetric Stokes Q, U, and V line profiles in sunspots , 1992 .

[8]  Timothy J. Schulz,et al.  Multiframe blind deconvolution of astronomical images , 1993 .

[9]  F. Cavallini The Italian Panoramic Monochromator , 1998 .

[10]  O. von der Lühe,et al.  High spatial resolution performance of a triple Fabry–Pérot filtergraph , 2000 .

[11]  J. C. del Toro Iniesta,et al.  Optimum modulation and demodulation matrices for solar polarimetry. , 2000, Applied optics.

[12]  Applying speckle masking to spectra , 2000 .

[13]  Haimin Wang,et al.  Near Real-Time Image Reconstruction , 2001 .

[14]  A. Glindemann,et al.  Multi-Conjugate Adaptive Optics with Two Deformable Mirrors – Requirements and Performance , 2001 .

[15]  A. Tritschler,et al.  High-resolution solar spectroscopy with TESOS – Upgrade from a double to a triple system , 2002 .

[16]  Bernd Freytag,et al.  Spots on the surface of Betelgeuse -- Results from new 3D stellar convection models , 2002 .

[17]  Andreas Lagg,et al.  Quiet-Sun inter-network magnetic fields observed in the infrared , 2003 .

[18]  Sergiy Shumko,et al.  Imaging magnetographs for high‐resolution solar observations in the visible and near‐infrared wavelength region , 2003 .

[19]  Inter-network magnetic fields observed with sub-arcsec resolution , 2003, astro-ph/0306329.

[20]  F. Kneer,et al.  Polarimetry in Sunspot Penumbrae at High Spatial Resolution , 2005 .

[21]  Mats G. Lofdahl,et al.  Penumbral structure at 0.1 resolution. I. General appearance and power spectra , 2004 .

[22]  C. Prieto,et al.  Center-to-limb variation of solar line profiles as a test of NLTE line formation calculations , 2004, astro-ph/0405154.

[23]  Mats G. Löfdahl,et al.  Solar Image Restoration By Use Of Multi-frame Blind De-convolution With Multiple Objects And Phase Diversity , 2005 .

[24]  D. Elmore,et al.  Polarimetric Littrow Spectrograph - instrument calibration and first measurements , 2005 .

[25]  Rolf Schlichenmaier,et al.  A polarization model for the German Vacuum Tower Telescope from in situ and laboratory measurements , 2005 .

[26]  Magnetic flux in the internetwork quiet Sun , 2005 .

[27]  O. von der Lühe,et al.  High Resolution Solar Speckle Imaging With the Extended Knox–Thompson Algorithm , 2006 .

[28]  Franz Kneer,et al.  The new Göttingen Fabry-Pérot spectrometer for two-dimensional observations of the Sun , 2006 .

[29]  A. Tritschler,et al.  The influence of image reconstruction on two-dimensional spectrograms of the solar photosphere , 2006 .

[30]  F. Kneer,et al.  The Distribution of Quiet Sun Magnetic Field Strengths from 0 to 1800 G , 2005, astro-ph/0509243.

[31]  The flux-gap between bright and dark solar magnetic structures , 2006 .

[32]  F. Cavallini IBIS: A New Post-Focus Instrument for Solar Imaging Spectroscopy , 2006 .

[33]  M. Sailer,et al.  Speckle reconstruction of photometric data observed with adaptive optics , 2006 .

[34]  Relation between photospheric magnetic field and chromospheric emission , 2007, astro-ph/0701896.

[35]  Franz Kneer,et al.  Modern Solar Facilities — Advanced Solar Science , 2007 .

[36]  J. C. del Toro Iniesta,et al.  To appear in ApJ Letters Preprint typeset using L ATEX style emulateapj v. 10/09/06 QUIET SUN INTERNETWORK MAGNETIC FIELDS FROM THE INVERSION OF HINODE MEASUREMENTS , 2022 .

[37]  C. Beck,et al.  Temporal evolution of the Evershed flow in sunspots - I. Observational characterization of Evershed clouds , 2007, 0707.2629.

[38]  Alexandra Tritschler,et al.  Field-Dependent Adaptive Optics Correction Derived with the Spectral Ratio Technique , 2007 .

[39]  K. Puschmann,et al.  On the properties of faculae at the poles of the Sun , 2007 .

[40]  T. Kosugi,et al.  The Hinode (Solar-B) Mission: An Overview , 2007 .

[41]  Mats G. Lofdahl,et al.  CRISP Spectropolarimetric Imaging of Penumbral Fine Structure , 2008, 0806.1638.

[42]  C. Beck,et al.  Internetwork magnetic field distribution from simultaneous 1.56 $\mathsf{\mu}$m and 630 nm observations , 2007, 0711.0267.

[43]  Roberto Gilmozzi,et al.  Ground-based and Airborne Telescopes VII , 2008 .

[44]  R. Rezaei,et al.  The Horizontal Internetwork Magnetic Field: Numerical Simulations in Comparison to Observations with Hinode , 2008, 0801.4915.

[45]  Kevin P. Reardon,et al.  Characterization of Fabry-Perot interferometers and multi-etalon transmission profiles - The IBIS instrumental profile , 2008 .

[46]  Fast events and waves in an active region of the Sun observed in H alpha with high spatial resolution , 2008 .

[47]  M. Noort,et al.  Stokes imaging polarimetry using image restoration at the Swedish 1-m Solar Telescope II : A calibration strategy for Fabry-Perot based instruments , 2008, 0805.4296.

[48]  F. Kneer,et al.  Narrow-band full Stokes polarimetry of small structures on the Sun with speckle methods , 2008 .

[49]  Kevin Reardon,et al.  Speckle interferometry with adaptive optics corrected solar data , 2008 .

[50]  D. Del Moro,et al.  IMAGING SPECTROPOLARIMETRY WITH IBIS: EVOLUTION OF BRIGHT POINTS IN THE QUIET SUN , 2009 .

[51]  T. Rimmele,et al.  MORPHOLOGY AND DYNAMICS OF THE LOW SOLAR CHROMOSPHERE , 2009, 0910.1381.

[52]  B. L. Ellerbroek,et al.  Inverse problems in astronomical adaptive optics , 2009 .

[53]  R. Rezaei,et al.  The magnetic flux of the quiet Sun internetwork as observed with the Tenerife infrared polarimeter , 2009, 0903.3158.

[54]  F. Kneer,et al.  Dynamics of small-scale magnetic fields on the Sun: observations and numerical simulations , 2009 .

[55]  C. Beck,et al.  Linear wavelength correlation matrices of photospheric and chromospheric spectral lines I. Observations vs. modeling , 2010 .

[56]  Mats G. Lofdahl,et al.  High-order aberration compensation with multi-frame blind deconvolution and phase diversity image restoration techniques , 2010, 1007.1236.

[57]  J. C. del Toro Iniesta,et al.  The Imaging Magnetograph eXperiment (IMaX) for the Sunrise Balloon-Borne Solar Observatory , 2010, 1009.1095.

[58]  F. Wöger Optical transfer functions derived from solar adaptive optics system data. , 2010, Applied optics.

[59]  M. Aschwanden Image Processing Techniques and Feature Recognition in Solar Physics , 2010 .

[60]  J. C. del Toro Iniesta,et al.  Two-dimensional solar spectropolarimetry with the KIS/IAA Visible Imaging Polarimeter , 2010, 1007.1153.

[61]  J. Stenflo Distribution functions for magnetic fields on the quiet Sun , 2010 .

[62]  K. Puschmann,et al.  THE ELECTRICAL CURRENT DENSITY VECTOR IN THE INNER PENUMBRA OF A SUNSPOT , 2010, 1008.2131.

[63]  K. Puschmann,et al.  A GEOMETRICAL HEIGHT SCALE FOR SUNSPOT PENUMBRAE , 2010, 1007.2779.

[64]  A. Tritschler,et al.  FABRY–PÉROT VERSUS SLIT SPECTROPOLARIMETRY OF PORES AND ACTIVE NETWORK: ANALYSIS OF IBIS AND HINODE DATA , 2010, 1001.0561.

[65]  R. Rezaei,et al.  Stray-light contamination and spatial deconvolution of slit-spectrograph observations , 2011, 1109.2421.