Terahertz photodetector based on double-walled carbon nanotube macrobundle-metal contacts.

We report on the characterization of a terahertz (THz) photodetector with an extremely simple structure consisting of only a macroscopic bundle of double-walled carbon nanotubes (DWCNTs) suspended between two metal electrodes. Polarization-sensitive, broadband, and significant photoresponse occurring at the DWCNT-metal contacts under THz illumination are observed with room-temperature photocurrent and photovoltage responsivities up to ∼16 mA/W and ∼0.2 V/W at 2.52 THz, respectively. Scanning photocurrent measurements provide evidence that the photothermoelectric mechanism dominates the detector response. The simple geometry and compact nature of our device make it suitable for integration and show promising applications for THz detection.

[1]  De-hai Wu,et al.  Photoinduced currents in carbon nanotube/metal heterojunctions , 2006 .

[2]  Harald Schneider,et al.  Ultrafast graphene-based broadband THz detector , 2013 .

[3]  J. Federici,et al.  THz imaging and sensing for security applications—explosives, weapons and drugs , 2005 .

[4]  J. Federici,et al.  Review of terahertz and subterahertz wireless communications , 2010 .

[5]  W. R. Tribe,et al.  Hidden object detection: security applications of terahertz technology , 2004, SPIE OPTO.

[6]  David Ménard,et al.  Position sensitive photothermoelectric effect in suspended single-walled carbon nanotube films. , 2009, Nano letters.

[7]  W. Grundfest,et al.  THz Medical Imaging: in vivo Hydration Sensing , 2011, IEEE Transactions on Terahertz Science and Technology.

[8]  Masayoshi Tonouchi,et al.  Carbon nanotube terahertz polarizer. , 2009, Nano letters.

[9]  R. Martel,et al.  Photothermoelectric effects in single-walled carbon nanotube films: Reinterpreting scanning photocurrent experiments , 2012, Nano Research.

[10]  A. Rogalski,et al.  Terahertz detectors and focal plane arrays , 2011 .

[11]  D. Santavicca,et al.  Terahertz detection mechanism and contact capacitance of individual metallic single-walled carbon nanotubes , 2012, 1203.6290.

[12]  R. Hauge,et al.  Broadband, Polarization-Sensitive Photodetector Based on Optically-Thick Films of Macroscopically Long, Dense, and Aligned Carbon Nanotubes , 2013, Scientific Reports.

[13]  Yan Zhao,et al.  A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS , 2012, IEEE Journal of Solid-State Circuits.

[14]  Joo-Hiuk Son,et al.  Terahertz electrical and optical characteristics of double-walled carbon nanotubes and their comparison with single-walled carbon nanotubes , 2007 .

[15]  A. Ferrari,et al.  Graphene field-effect transistors as room-temperature terahertz detectors. , 2012, Nature materials.

[16]  P. Taday,et al.  Detection and identification of explosives using terahertz pulsed spectroscopic imaging , 2005 .

[17]  Val Zwiller,et al.  Photocurrent generation in semiconducting and metallic carbon nanotubes , 2013, Nature Photonics.

[18]  R. R. Hartmann,et al.  Terahertz science and technology of carbon nanomaterials , 2013, Nanotechnology.

[19]  Ziran Zhao,et al.  Photocurrent response of carbon nanotube-metal heterojunctions in the terahertz range. , 2014, Optics express.

[20]  S. Winnerl,et al.  CMOS Integrated Antenna-Coupled Field-Effect Transistors for the Detection of Radiation From 0.2 to 4.3 THz , 2012, IEEE Transactions on Microwave Theory and Techniques.

[21]  X-C Zhang,et al.  Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system. , 2006, Optics express.

[22]  J. Wei,et al.  Ultrathin Single–Layered Membranes from Double–Walled Carbon Nanotubes , 2006 .

[23]  Xing Zhang,et al.  Significantly enhanced thermoelectric properties of ultralong double-walled carbon nanotube bundle , 2013 .

[24]  R. Hauge,et al.  Photothermoelectric p-n junction photodetector with intrinsic broadband polarimetry based on macroscopic carbon nanotube films. , 2013, ACS nano.

[25]  Jun Yan,et al.  Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. , 2014, Nature nanotechnology.

[26]  R. Hauge,et al.  Carbon nanotube terahertz detector. , 2014, Nano letters.

[27]  T. M. Klapwijk,et al.  Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-terahertz radiation , 2013 .

[28]  Ziran Zhao,et al.  Ultra-broadband photodetector for the visible to terahertz range by self-assembling reduced graphene oxide-silicon nanowire array heterojunctions. , 2014, Small.

[29]  Terahertz detection in single wall carbon nanotubes , 2007, 0711.2681.

[30]  J. Wei,et al.  Carbon nanotube macrobundles for light sensing. , 2006, Small.

[31]  J. Kevek,et al.  Photothermoelectric effect in suspended semiconducting carbon nanotubes. , 2014, ACS nano.

[32]  F. Xia,et al.  Ultrafast graphene photodetector , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.