Late-time Hubble Space Telescope Observations of AT 2018cow. I. Further Constraints on the Fading Prompt Emission and Thermal Properties 50–60 days Post-discovery

The exact nature of the luminous fast blue optical transient AT 2018cow is still debated. In this first of a two-paper series, we present a detailed analysis of three Hubble Space Telescope (HST) observations of AT 2018cow covering ∼50–60 days post-discovery in combination with other observations throughout the first two months and derive significantly improved constraints of the late thermal properties. By modeling the spectral energy distributions (SEDs), we confirm that the UV–optical emission over 50–60 days was still a smooth blackbody (i.e., optically thick) with a high temperature (T BB ∼ 15,000 K) and small radius (R BB ≲ 1000 R ⊙). Additionally, we report for the first time a break in the bolometric light curve: the thermal luminosity initially declined at a rate of L BB ∝ t −2.40 but faded much faster at t −3.06 after day 13. Reexamining possible late-time power sources, we disfavor significant contributions from radioactive decay based on the required 56Ni mass and lack of UV line blanketing in the HST SEDs. We argue that the commonly proposed interaction with circumstellar material may face significant challenges in explaining the late thermal properties, particularly the effects of the optical depth. Alternatively, we find that continuous outflow/wind driven by a central engine can still reasonably explain the combination of a receding photosphere, optically thick and rapidly fading emission, and intermediate-width lines. However, the rapid fading may have further implications on the power output and structure of the system. Our findings may support the hypothesis that AT 2018cow and other “Cow-like transients” are powered mainly by accretion onto a central engine.

[1]  K. Wiersema,et al.  A flash of polarized optical light points to an aspherical ‘cow’ , 2023, Monthly Notices of the Royal Astronomical Society.

[2]  Jin-Ping Zhu,et al.  A Population Study of the Radio Emission of Fast Blue Optical Transients , 2023, The Astrophysical Journal.

[3]  N. Soker,et al.  Terminating a common envelope jets supernova impostor event with a super-Eddington blue supergiant , 2022, Monthly Notices of the Royal Astronomical Society.

[4]  D. Perley,et al.  Dust Echoes from Luminous Fast Blue Optical Transients , 2022, The Astrophysical Journal.

[5]  J. Maund,et al.  An environmental analysis of the fast transient AT2018cow and implications for its progenitor and late-time brightness , 2022, 2210.01144.

[6]  Jin-Ping Zhu,et al.  Magnetar Engines in Fast Blue Optical Transients and Their Connections with SLSNe, SNe Ic-BL, and lGRBs , 2022, The Astrophysical Journal Letters.

[7]  M. Lyutikov On the nature of Fast Blue Optical Transients , 2022, Monthly Notices of the Royal Astronomical Society.

[8]  T. Piran,et al.  Bare collapse, formation of neutron star binaries and fast optical transients , 2022, Monthly Notices of the Royal Astronomical Society.

[9]  B. Metzger Luminous Fast Blue Optical Transients and Type Ibn/Icn SNe from Wolf-Rayet/Black Hole Mergers , 2022, The Astrophysical Journal.

[10]  J. Maund,et al.  A hot and luminous source at the site of the fast transient AT2018cow at 2-3 years after its explosion , 2022, 2203.01960.

[11]  N. Soker A Common Envelope Jets Supernova (CEJSN) Impostor Scenario for Fast Blue Optical Transients , 2022, Research in Astronomy and Astrophysics.

[12]  A. Tchekhovskoy,et al.  Shocked jets in CCSNe can power the zoo of fast blue optical transients , 2022, Monthly Notices of the Royal Astronomical Society.

[13]  T. Moriya,et al.  Properties of Type Ibn Supernovae: Implications for the Progenitor Evolution and the Origin of a Population of Rapid Transients , 2022, The Astrophysical Journal.

[14]  Shan-Qin Wang,et al.  iPTF 16asu Revisited: A Rapidly Evolving Superluminous Broad-lined Ic Supernova? , 2021, The Astrophysical Journal.

[15]  D. Perley,et al.  The X-Ray and Radio Loud Fast Blue Optical Transient AT2020mrf: Implications for an Emerging Class of Engine-driven Massive Star Explosions , 2021, The Astrophysical Journal.

[16]  P. Brown,et al.  Circumstellar Interaction Powers the Light Curves of Luminous Rapidly Evolving Optical Transients , 2021, The Astrophysical Journal.

[17]  D. Tsuna,et al.  AT 2018lqh: Black Hole Born from a Rotating Star? , 2021, The Astrophysical Journal Letters.

[18]  D. Perley,et al.  Luminous Millimeter, Radio, and X-Ray Emission from ZTF 20acigmel (AT 2020xnd) , 2021, The Astrophysical Journal.

[19]  E. Berger,et al.  Radio and X-Ray Observations of the Luminous Fast Blue Optical Transient AT 2020xnd , 2021, The Astrophysical Journal.

[20]  E. Liang,et al.  The Study of Dust Formation of Four Type Ibn Supernovae , 2021, The Astrophysical Journal.

[21]  E. Quataert,et al.  Optical to X-Ray Signatures of Dense Circumstellar Interaction in Core-collapse Supernovae , 2021, The Astrophysical Journal.

[22]  A. Palmese,et al.  Hubble Space Telescope Observations of GW170817: Complete Light Curves and the Properties of the Galaxy Merger of NGC 4993 , 2021, The Astrophysical Journal.

[23]  B. Margalit Analytic Light Curves of Dense CSM Shock Breakout and Cooling , 2021, The Astrophysical Journal.

[24]  A. Mahabal,et al.  A Search for Extragalactic Fast Blue Optical Transients in ZTF and the Rate of AT2018cow-like Transients , 2021, The Astrophysical Journal.

[25]  P. Duffell,et al.  Moving-mesh radiation-hydrodynamic simulations of wind-reprocessed transients , 2021, Monthly Notices of the Royal Astronomical Society.

[26]  Zaven Arzoumanian,et al.  Evidence for a compact object in the aftermath of the extragalactic transient AT2018cow , 2021, Nature Astronomy.

[27]  T. Holoien,et al.  A Swift Fix for Nuclear Outbursts , 2021 .

[28]  P. Chandra,et al.  uGMRT Observations of a Fast and Blue Optical Transient—AT 2018cow , 2021, The Astrophysical Journal Letters.

[29]  M. Graham,et al.  Real-time discovery of AT2020xnd: A Fast, Luminous Ultraviolet Transient with minimal radioactive ejecta , 2021, Monthly Notices of the Royal Astronomical Society.

[30]  C. McCully,et al.  The Peculiar Transient AT2018cow: A Possible Origin of a Type Ibn/IIn Supernova , 2021, 2101.08009.

[31]  Wenbin Lu,et al.  Fast Optical Transients from Stellar-mass Black Hole Tidal Disruption Events in Young Star Clusters , 2020, The Astrophysical Journal.

[32]  O. Pejcha,et al.  Supernova explosions interacting with aspherical circumstellar material: implications for light curves, spectral line profiles, and polarization , 2020, Astronomy & Astrophysics.

[33]  K. Nomoto,et al.  A Model for the Fast Blue Optical Transient AT2018cow: Circumstellar Interaction of a Pulsational Pair-instability Supernova , 2020, The Astrophysical Journal.

[34]  T. Takiwaki,et al.  A Systematic Study on the Rise Time–Peak Luminosity Relation for Bright Optical Transients Powered by Wind Shock Breakout , 2020, The Astrophysical Journal.

[35]  N. E. Sommer,et al.  The host galaxies of 106 rapidly evolving transients discovered by the Dark Energy Survey , 2020, Monthly Notices of the Royal Astronomical Society.

[36]  J. Prieto,et al.  Studying the environment of AT 2018cow with MUSE , 2020, 2005.02412.

[37]  I. Chilingarian,et al.  A Mildly Relativistic Outflow from the Energetic, Fast-rising Blue Optical Transient CSS161010 in a Dwarf Galaxy , 2020, The Astrophysical Journal.

[38]  K. Maeda,et al.  A Wind-driven Model: Application to Peculiar Transients AT2018cow and iPTF14hls , 2020, The Astrophysical Journal.

[39]  N. Yasuda,et al.  Rapidly Evolving Transients from the Hyper Suprime-Cam SSP Transient Survey , 2020, The Astrophysical Journal.

[40]  Ipac,et al.  The Koala: A Fast Blue Optical Transient with Luminous Radio Emission from a Starburst Dwarf Galaxy at z = 0.27 , 2020, The Astrophysical Journal.

[41]  Wenbin Lu,et al.  Wind-reprocessed Transients , 2020, The Astrophysical Journal.

[42]  T. An,et al.  The Nearby Luminous Transient AT2018cow: A Magnetar Formed in a Subrelativistically Expanding Nonjetted Explosion , 2019, The Astrophysical Journal.

[43]  L. Ho,et al.  Intermediate-Mass Black Holes , 2019, 1911.09678.

[44]  T. Takiwaki,et al.  Supernova Ejecta Interacting with a Circumstellar Disk. I. Two-dimensional Radiation-hydrodynamic Simulations , 2019, The Astrophysical Journal.

[45]  E. Berger,et al.  AT 2018cow VLBI: no long-lived relativistic outflow , 2019, Monthly Notices of the Royal Astronomical Society.

[46]  M. Graham,et al.  The luminous and rapidly evolving SN 2018bcc , 2019, 1910.06016.

[47]  N. Yoshida,et al.  Rapid Transients Originating from Thermonuclear Explosions in Helium White Dwarf Tidal Disruption Events , 2019, The Astrophysical Journal.

[48]  Cosimo Inserra,et al.  Observational properties of extreme supernovae , 2019, Nature Astronomy.

[49]  C. Wolf,et al.  SkyMapper Southern Survey: Second data release (DR2) , 2019, Publications of the Astronomical Society of Australia.

[50]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[51]  T. Morokuma,et al.  ALMA Observations of Molecular Gas in the Host Galaxy of AT2018cow , 2019, The Astrophysical Journal.

[52]  Shan-Qin Wang,et al.  Exploring the Energy Sources Powering the Light Curve of the Type Ibn Supernova PS15dpn and the Mass-loss History of the SN Progenitor , 2019, The Astrophysical Journal.

[53]  Y. Urata,et al.  ALMA Polarimetry of AT2018cow , 2019, The Astrophysical Journal.

[54]  David O. Jones,et al.  Investigating the diversity of Type Ia supernova spectra with the open-source relational data base kaepora , 2019, Monthly Notices of the Royal Astronomical Society.

[55]  Yun-Wei Yu,et al.  X-Ray Transients from the Accretion-induced Collapse of White Dwarfs , 2019, The Astrophysical Journal.

[56]  O. Fox,et al.  Signatures of circumstellar interaction in the unusual transient AT 2018cow , 2019, Monthly Notices of the Royal Astronomical Society.

[57]  N. Kanekar,et al.  H i 21 cm mapping of the host galaxy of AT2018cow: a fast-evolving luminous transient within a ring of high column density gas , 2019, Monthly Notices of the Royal Astronomical Society: Letters.

[58]  D. A. Kann,et al.  Nature of the unusual transient AT 2018cow from HI observations of its host galaxy , 2019, Astronomy & Astrophysics.

[59]  B. Metzger,et al.  Multimessenger Implications of AT2018cow: High-energy Cosmic-Ray and Neutrino Emissions from Magnetar-powered Superluminous Transients , 2018, Astrophysical Journal.

[60]  M. Lyutikov,et al.  Fast-rising blue optical transients and AT2018cow following electron-capture collapse of merged white dwarfs , 2018, Monthly Notices of the Royal Astronomical Society.

[61]  E. Quataert,et al.  Black hole accretion discs and luminous transients in failed supernovae from non-rotating supergiants , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[62]  N. Soker,et al.  Diversity of common envelope jets supernovae and the fast transient AT2018cow , 2018, Monthly Notices of the Royal Astronomical Society.

[63]  K. Nomoto,et al.  Models for fast-evolving supernova KSN 2015K: light curves of explosions of Super-AGB progentors , 2018, 1811.09139.

[64]  E. Phinney,et al.  AT2018cow: A Luminous Millimeter Transient , 2018, The Astrophysical Journal.

[65]  C. Guidorzi,et al.  An Embedded X-Ray Source Shines through the Aspherical AT 2018cow: Revealing the Inner Workings of the Most Luminous Fast-evolving Optical Transients , 2018, The Astrophysical Journal.

[66]  D. Kasen,et al.  Helium giant stars as progenitors of rapidly fading Type Ibc supernovae , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[67]  Bing Zhang,et al.  Photospheric Radius Evolution of Homologous Explosions , 2018, The Astrophysical Journal.

[68]  P. Brown,et al.  Swift spectra of AT2018cow: a white dwarf tidal disruption event? , 2018, Monthly Notices of the Royal Astronomical Society.

[69]  William H. Lee,et al.  The fast, luminous ultraviolet transient AT2018cow: extreme supernova, or disruption of a star by an intermediate-mass black hole? , 2018, Monthly Notices of the Royal Astronomical Society.

[70]  P. Brown,et al.  X-ray Swift observations of SN 2018cow , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[71]  B. J. Shappee,et al.  The Cow: Discovery of a Luminous, Hot, and Rapidly Evolving Transient , 2018, The Astrophysical Journal.

[72]  U. N. Dame,et al.  A fast-evolving luminous transient discovered by K2/Kepler , 2018, 1804.04641.

[73]  N. E. Sommer,et al.  Rapidly evolving transients in the Dark Energy Survey , 2018, Monthly Notices of the Royal Astronomical Society.

[74]  D. Kasen,et al.  Interaction of a Supernova with a Circumstellar Disk , 2018, 1802.05152.

[75]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[76]  D. Kasen,et al.  Models of bright nickel-free supernovae from stripped massive stars with circumstellar shells , 2018, 1801.01943.

[77]  Z. Cano,et al.  Broad-lined type Ic supernova iPTF16asu: A challenge to all popular models , 2017, Monthly Notices of the Royal Astronomical Society.

[78]  E. Quataert,et al.  Fast and Luminous Transients from the Explosions of Long-lived Massive White Dwarf Merger Remnants , 2017, 1710.09464.

[79]  S. E. Persson,et al.  The Carnegie Supernova Project. I. Third Photometry Data Release of Low-redshift Type Ia Supernovae and Other White Dwarf Explosions , 2017, 1709.05146.

[80]  A. Rest,et al.  Connecting the progenitors, pre-explosion variability and giant outbursts of luminous blue variables with Gaia16cfr , 2017, 1706.09962.

[81]  P. Vreeswijk,et al.  iPTF 16asu: A Luminous, Rapidly Evolving, and High-velocity Supernova , 2017, 1706.05018.

[82]  K. Hotokezaka,et al.  Rapidly Rising Optical Transients from the Birth of Binary Neutron Stars , 2017, 1704.06276.

[83]  R. J. Wainscoat,et al.  The Pan-STARRS1 Database and Data Products , 2016, The Astrophysical Journal Supplement Series.

[84]  Wei Zheng,et al.  SN 2015U: A Rapidly Evolving and Luminous Type Ibn Supernova , 2016, 1603.04866.

[85]  T. Moriya,et al.  Rapidly-evolving faint transients from stripped-envelope electron-capture supernovae , 2016, 1603.00033.

[86]  J. Sollerman,et al.  The bolometric light curves and physical parameters of stripped-envelope supernovae , 2016, 1602.01736.

[87]  E. Quataert,et al.  Fast Luminous Blue Transients from Newborn Black Holes , 2015, 1504.05582.

[88]  Andrew Becker,et al.  HOTPANTS: High Order Transform of PSF ANd Template Subtraction , 2015 .

[89]  R. Paul Butler,et al.  APF—The Lick Observatory Automated Planet Finder , 2014, 1402.6684.

[90]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[91]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[92]  M. Honsberg,et al.  GROND—a 7-Channel Imager , 2008, 0801.4801.

[93]  J. Prieto,et al.  Testing LMC Microlensing Scenarios: The Discrimination Power of the SuperMACHO Microlensing Survey , 2005, astro-ph/0509240.

[94]  Gustavo A. Medrano-Cerda,et al.  The Liverpool Telescope: performance and first results , 2004, SPIE Astronomical Telescopes + Instrumentation.

[95]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[96]  Peter W. A. Roming,et al.  The Swift Ultra-Violet/Optical Telescope , 2002, SPIE Optics + Photonics.

[97]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[98]  Ari Laor,et al.  Spectroscopic constraints on the properties of dust in active galactic nuclei , 1993 .

[99]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[100]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[101]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[102]  A. V. Filippenko,et al.  THE IMPORTANCE OF ATMOSPHERIC DIFFERENTIAL REFRACTION IN SPECTROPHOTOMETRY. , 1982 .

[103]  C. Smith,et al.  THE MOUNT LAGUNA OBSERVATORY OF SAN DIEGO COLLEGE , 1969 .