Nonlocality & Communication Complexity

This thesis discusses the connection between the nonlocal b eh vior of quantum mechanics and the communication complexity of distributed co mputations. The first three chapters provide an introduction to quantum information th eory with an emphasis on the description of entangled systems. The next chapter look s at how to measure the complexity of distributed computations. This is expressed by the ‘communication complexity’, defined as the minimum amount of communication req uired for the evaluation of a function —a communication necessary because the input strings and are distributed over separated parties. In the theory of qua ntum communication, we try to use the nonlocal effects of entangled quantum bits to redu c communication complexity. In chapters 5, 6 and 7, such an improvement over clas sic l communication is indeed established for various functions. However, it is al so shown that entanglement does not lead to a more efficient calculation of the inner prod uct function. We thus reach the conclusion that nonlocality sometimes—but not al ways—allows a reduction in communication complexity. This subtle relationship bet w en nonlocality and communication vanishes when we consider ‘superstrong’ correl ations. We demonstrate that if a violation of the Clauser-Horne-Shimony-Holt inequali ty with the maximum factor of is assumed, all decision problems have the same trivial comp lexity of a single bit. The thesis concludes with an overview of the current status o f quantum communication theory, and a discussion of the experimental feasability of he suggested protocols.

[1]  J. Neumann Zur Theorie der Gesellschaftsspiele , 1928 .

[2]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[3]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[4]  M. Kneser,et al.  Abschätzung der asymptotischen Dichte von Summenmengen , 1953 .

[5]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[6]  Elliott H. Lieb,et al.  Entropy inequalities , 1970 .

[7]  P. Pearle Hidden-Variable Example Based upon Data Rejection , 1970 .

[8]  A. Holevo Bounds for the quantity of information transmitted by a quantum communication channel , 1973 .

[9]  Henry B. Mann,et al.  Addition Theorems: The Addition Theorems of Group Theory and Number Theory , 1976 .

[10]  Randall C. Thompson,et al.  Experimental Test of Local Hidden-Variable Theories , 1976 .

[11]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[12]  Andrew Chi-Chih Yao,et al.  Some complexity questions related to distributive computing(Preliminary Report) , 1979, STOC.

[13]  B. S. Cirel'son Quantum generalizations of Bell's inequality , 1980 .

[14]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[15]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[16]  Umesh V. Vazirani Towards a strong communication complexity theory or generating quasi-random sequences from two communicating slightly-random sources , 1985, STOC '85.

[17]  Oded Goldreich,et al.  Unbiased bits from sources of weak randomness and probabilistic communication complexity , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[18]  Peter Frankl,et al.  Complexity classes in communication complexity theory , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[19]  Bala Kalyanasundaram,et al.  The Probabilistic Communication Complexity of Set Intersection , 1992, SIAM J. Discret. Math..

[20]  S. BellJ,et al.  Einstein‐Podolsky‐Rosen逆理 量子力学での遠隔作用か , 1987 .

[21]  Oded Goldreich,et al.  Unbiased Bits from Sources of Weak Randomness and Probabilistic Communication Complexity , 1988, SIAM J. Comput..

[22]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[23]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[24]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[25]  S. Braunstein,et al.  Wringing out better bell inequalities , 1990 .

[26]  N. Mermin What's Wrong with these Elements of Reality? , 1990 .

[27]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[28]  Roger B. Myerson,et al.  Game theory - Analysis of Conflict , 1991 .

[29]  Lucien Hardy,et al.  A new way to obtain bell inequalities , 1991 .

[30]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[31]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[32]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[33]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[34]  S. Popescu,et al.  Quantum nonlocality as an axiom , 1994 .

[35]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[36]  Benjamin Schumacher Sending quantum entanglement through noisy channels , 1996 .

[37]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[38]  Weinfurter,et al.  Dense coding in experimental quantum communication. , 1996, Physical review letters.

[39]  S. Popescu,et al.  Nonlocality as an axiom for quantum theory , 1995, quant-ph/9508009.

[40]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[41]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[42]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[43]  A. U.S. Action and Passion at a Distance , 1997 .

[44]  Avi Wigderson,et al.  Quantum vs. classical communication and computation , 1998, STOC '98.

[45]  Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels , 1997, quant-ph/9710013.

[46]  H. Weinfurter,et al.  Violation of Bell's Inequality under Strict Einstein Locality Conditions , 1998, quant-ph/9810080.

[47]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[48]  Quantum communication using a nonlocal Zeno effect , 1999 .

[49]  Ashwin Nayak,et al.  Optimal lower bounds for quantum automata and random access codes , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[50]  Ran Raz,et al.  Exponential separation of quantum and classical communication complexity , 1999, STOC '99.

[51]  Ronald de Wolf,et al.  Quantum lower bounds by polynomials , 2001, JACM.

[52]  Ronald de Wolf,et al.  Communication complexity lower bounds by polynomials , 1999, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[53]  Andris Ambainis,et al.  The Quantum Communication Complexity of Sampling , 2003, SIAM J. Comput..

[54]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .