Generalized inner bending continua for linear fiber reinforced materials

Abstract This paper deals with the effective behaviour of elastic materials periodically reinforced by linear slender elastic inclusions. Assuming a small scale ratio e between the cell size and the characteristic size of the macroscopic deformation, the macro-behaviour at the leading order is derived by the homogenization method of periodic media. Different orders of magnitude of the contrast between the shear modulus of the material μ m and of the reinforcement μ p are considered. A contrast μ m / μ p of the order of e 2 leads to a full coupling between the beam behaviour of the inclusions and the elastic behaviour of the matrix. Under transverse motions, the medium behaves at the leading order as a generalized continuum that accounts for the inner bending introduced by the reinforcements and the shear of the matrix. Instead of the second degree balance equation of elastic Cauchy continua usually obtained for homogenized composites, the governing equation is of the fourth degree and the description differs from that of a Cosserat media. This description degenerates into, (i) the usual continua behaviour of elastic composite materials when O ( μ m / μ p ) ⩾  e , (ii) the usual Euler–Bernoulli beam behaviour when O ( μ m / μ p ) ⩽  e 3 . The constitutive parameters are derived and can be computed or estimated from simplified geometries. Simple criteria are given to identify the appropriate model for real reinforcements under given loadings.

[1]  P. D. Buhan,et al.  Modélisation multiphasique de matériaux renforcés par inclusions linéaires , 1999 .

[2]  J. Auriault,et al.  Dynamic behaviour of porous media saturated by a viscoelastic fluid. Application to bituminous concretes , 1990 .

[3]  Stéphane Hans,et al.  DYNAMICS OF DISCRETE FRAMED STRUCTURES: A UNIFIED HOMOGENIZED DESCRIPTION , 2008 .

[4]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[5]  R. Christensen,et al.  Solutions for effective shear properties in three phase sphere and cylinder models , 1979 .

[6]  Jean-Louis Auriault,et al.  Heterogeneous medium. Is an equivalent macroscopic description possible , 1991 .

[7]  Barbara Gambin,et al.  Higher-Order Terms in the Homogenized Stress-Strain Relation of Periodic Elastic Media , 1989 .

[8]  S. Forest Milieux continus généralisés et matériaux hétérogènes , 2006 .

[9]  Nicos Makris,et al.  Dynamic pile‐soil‐pile interaction. Part II: Lateral and seismic response , 1992 .

[10]  J. Nédélec,et al.  The effect of a thin inclusion of high rigidity in an elastic body , 1980 .

[11]  Patrick de Buhan,et al.  Multiphase approach as a generalized homogenization procedure for modelling the macroscopic behaviour of soils reinforced by linear inclusions , 2008 .

[12]  Claude Boutin,et al.  Microstructural effects in elastic composites , 1996 .

[13]  A. C. Eringen,et al.  Mechanics of Micromorphic Continua , 1968 .

[14]  Pierre Seppecher,et al.  Un résultat d'homogénéisation pour un matériau élastique renforcé périodiquement par des fibres élastiques de très grande rigidité , 1997 .

[15]  Pierre Seppecher,et al.  A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium , 1997 .

[16]  Z. Hashin Analysis of Composite Materials—A Survey , 1983 .

[17]  J. M. Viaño,et al.  Mathematical modelling of rods , 1996 .

[18]  E. Sanchez-Palencia,et al.  Suspension of solid particles in a newtonian fluid , 1983 .

[19]  Guy Bouchitté,et al.  Homogenization of a soft elastic material reinforced by fibers , 2002 .