Quality Improvement via Optimization of Tolerance Intervals During the Design Stage

[1]  P. L. Combettes,et al.  Foundation of set theoretic estimation , 1993 .

[2]  Eric Walter,et al.  A general-purpose global optimizer: implementation and applications , 1984 .

[3]  Genichi Taguchi,et al.  Quality Engineering through Design Optimization , 1989 .

[4]  Fred C. Schweppe,et al.  Uncertain dynamic systems , 1973 .

[5]  Y. A. Merkuryev,et al.  Identification of objects with unknown bounded disturbances , 1989 .

[6]  E. Aiyoshi,et al.  Necessary conditions for min-max problems and algorithms by a relaxation procedure , 1980 .

[7]  Luigi Chisci,et al.  Recursive Set Membership State Estimation via Parallelotopes , 1994 .

[8]  E. Ziegel Optimal design and analysis of experiments , 1990 .

[9]  J. P. Norton,et al.  Identification and application of bounded-parameter models , 1985, Autom..

[10]  Gérard Favier,et al.  Recursive Determination of Parameter Uncertainty Intervals for Linear Models with Unknown But Bounded Errors , 1994 .

[11]  Eric Walter,et al.  Characterizing Sets Defined By Inequalities , 1994 .

[12]  Michael J. Grimble,et al.  28th IEEE Conference on Decision and Control , 1990 .

[13]  E. Walter,et al.  Mathematical equivalence of two ellipsoid algorithms for bounded-error estimation , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[14]  Gustavo Belforte,et al.  Recursive estimation for linear models with set membership measurement error , 1992 .

[15]  P. L. Combettes The foundations of set theoretic estimation , 1993 .

[16]  Gustavo Belforte,et al.  Parameter estimation algorithms for a set-membership description of uncertainty , 1990, Autom..

[17]  V. Broman,et al.  A compact algorithm for the intersection and approximation of N -dimensional polytopes , 1990 .

[18]  E. Walter,et al.  Exact recursive polyhedral description of the feasible parameter set for bounded-error models , 1989 .

[19]  Vito Cerone,et al.  Feasible parameter set for linear models with bounded errors in all variables , 1993, Autom..

[20]  Eric Walter,et al.  Polyhedric approximation and tracking for bounded-error models , 1993, 1993 IEEE International Symposium on Circuits and Systems.

[21]  James M. Lucas,et al.  Optimum Composite Designs , 1974 .

[22]  J. Deller Set membership identification in digital signal processing , 1989, IEEE ASSP Magazine.

[23]  E. Walter,et al.  Estimation of parameter bounds from bounded-error data: a survey , 1990 .

[24]  Sylviane Gentil,et al.  Reformulation of parameter identification with unknown-but-bounded errors , 1988 .

[25]  Antonio Vicino,et al.  Optimal estimation theory for dynamic systems with set membership uncertainty: An overview , 1991, Autom..

[26]  E. Hansen Global optimization using interval analysis — the multi-dimensional case , 1980 .

[27]  Eric R. Ziegel,et al.  Model-Oriented Data Analysis , 1990 .

[28]  J. R. Deller,et al.  Least-square identification with error bounds for real-time signal processing and control , 1993, Proc. IEEE.

[29]  Y. F. Huang,et al.  On the value of information in system identification - Bounded noise case , 1982, Autom..

[30]  M. Milanese,et al.  Estimation theory and uncertainty intervals evaluation in presence of unknown but bounded errors: Linear families of models and estimators , 1982 .

[31]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[32]  J. Norton,et al.  Parameter-Bounding Algorithms for Linear Errors in Variables Models , 1992 .

[33]  G. Cagnac,et al.  Nouveau cours de mathématiques spéciales , 1961 .

[34]  Sylviane Gentil,et al.  Recursive membership estimation for output-error models , 1990 .

[35]  Eric Walter,et al.  Minimum-volume ellipsoids containing compact sets : Application to parameter bounding , 1994, Autom..

[36]  J. P. Norton,et al.  Fast and robust algorithm to compute exact polytope parameter bounds , 1990 .

[37]  J. Norton Identification of parameter bounds for ARMAX models from records with bounded noise , 1987 .