A Class of Commutative Dynamics of Open Quantum Systems

We analyze a class of dynamics of open quantum systems which is governed by the dynamical map mutually commuting at different times. Such evolution may be effectively described via the spectral analysis of the corresponding time-dependent generators. We consider both Markovian and non-Markovian cases.

[1]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[2]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[3]  Francesco Petruccione,et al.  Non-Markovian dynamics of a qubit , 2006 .

[4]  Andrzej Kossakowski,et al.  Long-time memory in non-Markovian evolutions , 2009, 0906.5122.

[5]  Englert,et al.  Quantum optical master equations: The use of damping bases. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[6]  Krzysztof Wódkiewicz,et al.  Depolarizing channel as a completely positive map with memory , 2004 .

[7]  F. R. Gantmakher The Theory of Matrices , 1984 .

[8]  Completely positive post-Markovian master equation via a measurement approach , 2004, quant-ph/0404077.

[9]  Rolando Rebolledo,et al.  On the Structure of Generators for Non-Markovian Master Equations , 2009, Open Syst. Inf. Dyn..

[10]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[11]  K. Lendi,et al.  Quantum Dynamical Semigroups and Applications , 1987 .

[12]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[13]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[14]  Dariusz Chruściński,et al.  Non-Markovian quantum dynamics: local versus nonlocal. , 2009, Physical review letters.

[15]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[16]  S. Maniscalco Limits in the characteristic-function description of non-Lindblad-type open quantum systems , 2005, quant-ph/0503125.