Blue sensitizers for solar cells: Natural dyes from Calafate and Jaboticaba

Abstract Blue-violet anthocyanins from Jaboticaba (Myrtus cauliflora Mart) and Calafate (Berberies buxifolia Lam) were employed as TiO2 dye-sensitizers. Solar cells sensitized by Jaboticaba extracts achieved up to Jsc=9.0 mA cm−2, Voc=0.59 V, Pmax=1.9 mW cm−2 and ff=0.54, while for Calafate sensitized cells the values determined were up to Jsc=6.2 mA cm−2, Voc=0.47 V, Pmax=1.1 mW cm−2 and ff=0.36. Other natural dyes were evaluated without significant photocurrent, demonstrating that only selected extracts are capable of converting sunlight in electricity. The results obtained with extracts of Jaboticaba and Calafate show a successful conversion of visible light into electricity by using natural dyes as wide band-gap semiconductor sensitizers in dye-sensitized solar cells. It also represents an environmentally friendly alternative for dye-sensitized solar cells with low cost production and an excellent system for educational purposes.

[1]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[2]  A. Pomilio Anthocyanins in fruits of Berberis buxifolia , 1973 .

[3]  D. Klug,et al.  Electron injection and recombination in dye sensitized nanocrystalline titanium dioxide films: A comparison of ruthenium bipyridyl and porphyrin sensitizer dyes , 2000 .

[4]  C. Bignozzi,et al.  4-Phenylpyridine as ancillary ligand in ruthenium(II) polypyridyl complexes for sensitization of n-type TiO2 electrodes , 1998 .

[5]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .

[6]  A. Rossi,et al.  Indicadores naturais de pH: usar papel ou solução? , 2002 .

[7]  David R. Klug,et al.  Electron injection kinetics for the nanocrystalline TiO2 films sensitised with the dye (Bu4N)2Ru(dcbpyH)2(NCS)2 , 2002 .

[8]  Michael Grätzel,et al.  Applications of functionalized transition metal complexes in photonic and optoelectronic devices , 1998 .

[9]  J. Rabani,et al.  Photosensitization of nanocrystalline TiO2 films by anthocyanin dyes , 2002 .

[10]  Greg P. Smestad,et al.  Ultrafast Electron Injection: Implications for a Photoelectrochemical Cell Utilizing an Anthocyanin Dye-Sensitized TiO2 Nanocrystalline Electrode , 1997 .

[11]  K. Tennakone,et al.  Nanoporous TiO2 photoanode sensitized with the flower pigment cyanidin , 1997 .

[12]  N. M. Iha,et al.  Photoelectrochemical solar cell using extract of Eugenia jambolana Lam as a natural sensitizer. , 2003, Anais da Academia Brasileira de Ciencias.

[13]  S. Haque,et al.  Towards optimisation of electron transfer processes in dye sensitised solar cells , 2004 .

[14]  Qing Dai,et al.  Unusually efficient photosensitization of nanocrystalline TiO2 films by pomegranate pigments in aqueous medium , 2002 .

[15]  B. Gregg Interfacial processes in the dye-sensitized solar cell , 2004 .

[16]  H. Nalwa,et al.  Handbook of Photochemistry and Photobiology , 2003 .

[17]  Iha Supramolecular photochemistry and solar cells , 2000, Anais da Academia Brasileira de Ciencias.

[18]  Anders Hagfeldt,et al.  Environmental aspects of electricity generation from a nanocrystalline dye sensitized solar cell system , 2001 .

[19]  N. M. Iha,et al.  Metal complex sensitizers in dye-sensitized solar cells , 2004 .

[20]  Greg P. Smestad,et al.  Education and solar conversion:: Demonstrating electron transfer , 1998 .

[21]  Greg P. Smestad,et al.  Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter , 1998 .

[22]  M. Fathy,et al.  Preparation and characterization of nano particles ZnO films for dye-sensitized solar cells , 2005 .

[23]  M. Graetzel,et al.  Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins , 1993 .

[24]  K. Tennakone,et al.  Efficient photosensitization of nanocrystalline TiO2 films by tannins and related phenolic substances , 1996 .

[25]  G. Ponce,et al.  Electron transfer via organic dyes for solar conversion , 1999 .

[26]  David R. Klug,et al.  Parameters Influencing Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium Dioxide Films , 2000 .

[27]  Hironori Arakawa,et al.  Kinetics and mechanism of electron injection and charge recombination in dye-sensitized nanocrystalline semiconductors , 2004 .

[28]  T. Lian,et al.  Ultrafast electron injection from metal polypyridyl complexes to metal-oxide nanocrystalline thin films , 2004 .

[29]  N. M. Iha,et al.  Electron injection versus charge recombination in photoelectrochemical solar cells using cis-[(dcbH2)2Ru(CNpy)(H2O)]Cl2 as a nanocrystalline TiO2 sensitizer , 2002 .

[30]  N. M. Iha,et al.  Energy conversion: from the ligand field photochemistry to solar cells , 2000 .

[31]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[32]  Claudia Barolo,et al.  Stepwise Assembly of Amphiphilic Ruthenium Sensitizers and their Applications in Dye Sensitized Solar Cell , 2004 .

[33]  C. Bignozzi,et al.  Design of molecular dyes for application in photoelectrochemical and electrochromic devices based on nanocrystalline metal oxide semiconductors , 2004 .

[34]  Christian Graziani Garcia,et al.  Fruit extracts and ruthenium polypyridinic dyes for sensitization of TiO2 in photoelectrochemical solar cells , 2003 .

[35]  P. Liska,et al.  Engineering of a novel ruthenium sensitizer and its application in dye-sensitized solar cells for conversion of sunlight into electricity. , 2005, Inorganic chemistry.

[36]  Time-resolved experiments in dye-sensitized solar cells using [(dcbH2)2Ru(ppy)2](ClO4)2 as a nanocrystalline TiO2 sensitizer , 2002 .

[37]  Brian A. Gregg,et al.  Excitonic Solar Cells , 2003 .