Robust Preconditioner for H(curl) Interface Problems

In this paper, we construct an auxiliary space preconditioner for Maxwell’s equations with interface, and generalize the HX preconditioner developed in [9] to the problem with strongly discontinuous coefficients. For the H(curl) interface problem, we show that the condition number of the HX preconditioned system is uniformly bounded with respect to the coefficients and meshsize.

[1]  Panayot S. Vassilevski,et al.  H(curl) auxiliary mesh preconditioning , 2008, Numer. Linear Algebra Appl..

[2]  Andrea Toselli,et al.  Overlapping Schwarz methods for Maxwell's equations in three dimensions , 1997, Numerische Mathematik.

[3]  Weiying Zheng,et al.  An Adaptive Multilevel Method for Time-Harmonic Maxwell Equations with Singularities , 2007, SIAM J. Sci. Comput..

[4]  M. Birman,et al.  L2-Theory of the Maxwell operator in arbitrary domains , 1987 .

[5]  Joachim Schöberl,et al.  An algebraic multigrid method for finite element discretizations with edge elements , 2002, Numer. Linear Algebra Appl..

[6]  Panayot S. Vassilevski,et al.  PARALLEL AUXILIARY SPACE AMG FOR H(curl) PROBLEMS , 2009 .

[7]  Jun Zou,et al.  A Weighted Helmholtz Decomposition and Applications to Domain Decomposition for Saddle-point Maxwell Systems , 2008 .

[8]  R. Hiptmair,et al.  Acta Numerica 2002: Finite elements in computational electromagnetism , 2002 .

[9]  Jinchao Xu,et al.  Nodal Auxiliary Space Preconditioning in H(curl) and H(div) Spaces , 2007, SIAM J. Numer. Anal..

[10]  Christophe Hazard,et al.  A Singular Field Method for the Solution of Maxwell's Equations in Polyhedral Domains , 1999, SIAM J. Appl. Math..

[11]  Ludmil T. Zikatanov,et al.  Two‐sided bounds on the convergence rate of two‐level methods , 2008, Numer. Linear Algebra Appl..

[12]  Douglas N. Arnold,et al.  Multigrid in H (div) and H (curl) , 2000, Numerische Mathematik.

[13]  Jun Zhao,et al.  Overlapping Schwarz methods in H(curl) on polyhedral domains , 2002, J. Num. Math..

[14]  R. Hiptmair Multigrid Method for Maxwell's Equations , 1998 .

[15]  Jinchao Xu,et al.  The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids , 1996, Computing.

[16]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[17]  Alberto Valli,et al.  Some remarks on the characterization of the space of tangential traces ofH(rot;Ω) and the construction of an extension operator , 1996 .

[18]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[19]  Jinchao Xu,et al.  UNIFORM CONVERGENT MULTIGRID METHODS FOR ELLIPTIC PROBLEMS WITH STRONGLY DISCONTINUOUS COEFFICIENTS , 2008 .

[20]  Jinchao Xu,et al.  Some Estimates for a Weighted L 2 Projection , 1991 .

[21]  Tzanio V. Kolev,et al.  Some experience with a H1-based auxiliary space AMG for H(curl)-problems , 2006 .

[22]  Jun Zou,et al.  A Nonoverlapping Domain Decomposition Method for Maxwell's Equations in Three Dimensions , 2003, SIAM J. Numer. Anal..

[23]  Pavel B. Bochev,et al.  An Algebraic Multigrid Approach Based on a Compatible Gauge Reformulation of Maxwell's Equations , 2008, SIAM J. Sci. Comput..