Flower pollination algorithm: A novel approach for multiobjective optimization

Multiobjective design optimization problems require multiobjective optimization techniques to solve, and it is often very challenging to obtain high-quality Pareto fronts accurately. In this article, the recently developed flower pollination algorithm (FPA) is extended to solve multiobjective optimization problems. The proposed method is used to solve a set of multiobjective test functions and two bi-objective design benchmarks, and a comparison of the proposed algorithm with other algorithms has been made, which shows that the FPA is efficient with a good convergence rate. Finally, the importance for further parametric studies and theoretical analysis is highlighted and discussed.

[1]  Zong Woo Geem,et al.  Music-Inspired Harmony Search Algorithm , 2009 .

[2]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[3]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[4]  B. V. Babu,et al.  Multi-objective differential evolution (MODE) for optimization of supply chain planning and management , 2007, 2007 IEEE Congress on Evolutionary Computation.

[5]  Ji Young Lee,et al.  Multi-objective optimisation using the Bees Algorithm , 2010 .

[6]  Qingfu Zhang,et al.  Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition , 2009 .

[7]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[8]  Xin-She Yang,et al.  Engineering Optimization: An Introduction with Metaheuristic Applications , 2010 .

[9]  Kalyanmoy Deb,et al.  Mechanical Component Design for Multiple Objectives Using Elitist Non-dominated Sorting GA , 2000, PPSN.

[10]  Xin-She Yang,et al.  Bat algorithm: a novel approach for global engineering optimization , 2012, 1211.6663.

[11]  Shang He,et al.  An improved particle swarm optimizer for mechanical design optimization problems , 2004 .

[12]  Amir Hossein Gandomi,et al.  Coupled eagle strategy and differential evolution for unconstrained and constrained global optimization , 2012, Comput. Math. Appl..

[13]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[14]  Bogdan Filipic,et al.  DEMO: Differential Evolution for Multiobjective Optimization , 2005, EMO.

[15]  Xin-She Yang,et al.  Flower Pollination Algorithm for Global Optimization , 2012, UCNC.

[16]  Ilya Pavlyukevich Lévy flights, non-local search and simulated annealing , 2007, J. Comput. Phys..

[17]  B. Glover Understanding Flowers and Flowering , 2007 .

[18]  Muzaffar Eusuff,et al.  Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization , 2006 .

[19]  C. Floudas Handbook of Test Problems in Local and Global Optimization , 1999 .

[20]  Arthur C. Sanderson,et al.  Multi-objective differential evolution: theory and applications , 2004 .

[21]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[22]  N. Waser Flower Constancy: Definition, Cause, and Measurement , 1986, The American Naturalist.

[23]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[24]  Hussein A. Abbass,et al.  The Pareto Differential Evolution Algorithm , 2002, Int. J. Artif. Intell. Tools.

[25]  Z. Geem Optimal cost design of water distribution networks using harmony search , 2006 .

[26]  Martin J. Ingrouille,et al.  Understanding flowers and flowering: an integrated approach , 2009 .

[27]  Wenyin Gong,et al.  An efficient multiobjective differential evolution algorithm for engineering design , 2009 .

[28]  K. Multiobjective Optimization Using a Pareto Differential Evolution Approach , 2022 .

[29]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[30]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[31]  Xin-She Yang,et al.  A New Metaheuristic Bat-Inspired Algorithm , 2010, NICSO.

[32]  R. Mantegna,et al.  Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[33]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[34]  Amir Hossein Gandomi,et al.  Benchmark Problems in Structural Optimization , 2011, Computational Optimization, Methods and Algorithms.

[35]  Kalyanmoy Deb,et al.  Evolutionary Algorithms for Multi-Criterion Optimization in Engineering Design , 1999 .

[36]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[37]  Kalyanmoy Deb,et al.  Multi-objective Optimization , 2014 .

[38]  Carlos A. Coello Coello,et al.  Solving Engineering Optimization Problems with the Simple Constrained Particle Swarm Optimizer , 2008, Informatica.

[39]  Xin-She Yang,et al.  Bat algorithm for multi-objective optimisation , 2011, Int. J. Bio Inspired Comput..

[40]  Gordon H. Huang,et al.  IPWM: AN INTERVAL PARAMETER WATER QUALITY MANAGEMENT MODEL , 1996 .

[41]  Xin-She Yang,et al.  Review of Metaheuristics and Generalized Evolutionary Walk Algorithm , 2011, 1105.3668.

[42]  Carlos A. Coello Coello,et al.  An updated survey of evolutionary multiobjective optimization techniques: state of the art and future trends , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[43]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .

[44]  Tapabrata Ray,et al.  A Swarm Metaphor for Multiobjective Design Optimization , 2002 .

[45]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[46]  D. Ackley A connectionist machine for genetic hillclimbing , 1987 .

[47]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[48]  K. Lee,et al.  The harmony search heuristic algorithm for discrete structural optimization , 2005 .

[49]  Xin-She Yang,et al.  Multi-Objective Flower Algorithm for Optimization , 2014, ICCS.

[50]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[51]  Z. Geem Music-Inspired Harmony Search Algorithm: Theory and Applications , 2009 .

[52]  Z. Geem Optimal Design of Water Distribution Networks Using Harmony Search , 2009 .