Supervised Machine Learning: A Review of Classification Techniques

In this paper, we present an evaluation of learning algorithms of a novel rule evaluation support method for postprocessing of mined results with rule evaluation models based on objective indices. Post-processing of mined results is one of the key processes in a data mining process. However, it is difficult for human experts to completely evaluate several thousands of rules from a large dataset with noises. To reduce the costs in such rule evaluation task, we have developed the rule evaluation support method with rule evaluation models, which learn from objective indices for mined classification rules and evaluations by a human expert for each rule. To enhance adaptability of rule evaluation models, we introduced a constructive meta-learning system to choose proper learning algorithms. Then, we have done the case study on the meningitis data mining as an actual problem

[1]  R. Bone Discovery , 1938, Nature.

[2]  L. Stein,et al.  Probability and the Weighing of Evidence , 1950 .

[3]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[4]  A. A. Mullin,et al.  Principles of neurodynamics , 1962 .

[5]  Philip J. Stone,et al.  Experiments in induction , 1966 .

[6]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[7]  L. A. ZADEH,et al.  The concept of a linguistic variable and its application to approximate reasoning - I , 1975, Inf. Sci..

[8]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[9]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[10]  L. A. Goodman,et al.  Measures of association for cross classifications , 1979 .

[11]  Tom M. Mitchell,et al.  Generalization as Search , 2002 .

[12]  Howard Carter,et al.  Foundations of Decision Support Systems , 1982 .

[13]  Alf C. Zimmer,et al.  What Uncertainty Judgments Can Tell About the Underlying Subjective Probabilities , 1985, UAI.

[14]  Piero P. Bonissone,et al.  Selecting Uncertainty Calculi and Granularity: An Experiment in Trading-off Precision and Complexity , 1985, UAI.

[15]  Editors , 1986, Brain Research Bulletin.

[16]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[17]  I. T. Jolliffe,et al.  Springer series in statistics , 1986 .

[18]  Ryszard S. Michalski,et al.  The AQ15 Inductive Learning System: An Overview and Experiments , 1986 .

[19]  Alfred V. Aho,et al.  Compilers: Principles, Techniques, and Tools , 1986, Addison-Wesley series in computer science / World student series edition.

[20]  Ivan Bratko,et al.  ASSISTANT 86: A Knowledge-Elicitation Tool for Sophisticated Users , 1987, EWSL.

[21]  Geoffrey E. Hinton,et al.  Learning distributed representations of concepts. , 1989 .

[22]  J. Friedman Regularized Discriminant Analysis , 1989 .

[23]  D.E. Goldberg,et al.  Classifier Systems and Genetic Algorithms , 1989, Artif. Intell..

[24]  Bojan Cestnik,et al.  Estimating Probabilities: A Crucial Task in Machine Learning , 1990, ECAI.

[25]  David E. Rumelhart,et al.  Generalization by Weight-Elimination with Application to Forecasting , 1990, NIPS.

[26]  Efraim Turban,et al.  Decision Support and Expert Systems: Management Support Systems , 1990 .

[27]  Igor Kononenko,et al.  Semi-Naive Bayesian Classifier , 1991, EWSL.

[28]  Padhraic Smyth,et al.  Rule Induction Using Information Theory , 1991, Knowledge Discovery in Databases.

[29]  Gregory Piatetsky-Shapiro,et al.  Discovery, Analysis, and Presentation of Strong Rules , 1991, Knowledge Discovery in Databases.

[30]  David H. Wolpert,et al.  Stacked generalization , 1992, Neural Networks.

[31]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[32]  Joel L. Wolf,et al.  Synthetic Traces for Trace-Driven Simulation of Cache Memories , 1992, IEEE Trans. Computers.

[33]  Igor Kononenko,et al.  Inductive and Bayesian learning in medical diagnosis , 1993, Appl. Artif. Intell..

[34]  H. Zimmermann,et al.  Fuzzy Set Theory and Its Applications , 1993 .

[35]  Manfred K. Warmuth,et al.  The Weighted Majority Algorithm , 1994, Inf. Comput..

[36]  Serge Abiteboul,et al.  Foundations of Databases , 1994 .

[37]  Alberto Maria Segre,et al.  Programs for Machine Learning , 1994 .

[38]  Igor Kononenko,et al.  Estimating Attributes: Analysis and Extensions of RELIEF , 1994, ECML.

[39]  William W. Cohen Fast Effective Rule Induction , 1995, ICML.

[40]  Hava T. Siegelmann,et al.  On the Computational Power of Neural Nets , 1995, J. Comput. Syst. Sci..

[41]  Roberto Sabella,et al.  Optical path technologies: a comparison among different cross-connect architectures , 1996 .

[42]  Mehran Sahami,et al.  Learning Limited Dependence Bayesian Classifiers , 1996, KDD.

[43]  Willi Klösgen,et al.  Explora: A Multipattern and Multistrategy Discovery Assistant , 1996, Advances in Knowledge Discovery and Data Mining.

[44]  Guy L. Steele,et al.  The Java Language Specification , 1996 .

[45]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[46]  I. Csiszár Maxent, Mathematics, and Information Theory , 1996 .

[47]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[48]  Francisco Herrera,et al.  On the Linguistic Approach in Multi-Person Decision Making , 1996 .

[49]  David M. Dutton,et al.  A review of machine learning , 1997, The Knowledge Engineering Review.

[50]  Kamal Ali,et al.  Partial Classification Using Association Rules , 1997, KDD.

[51]  Rajeev Motwani,et al.  Dynamic itemset counting and implication rules for market basket data , 1997, SIGMOD '97.

[52]  Marko Bohanec,et al.  Knowledge-Based Evaluation of Higher Education Institutions , 1997 .

[53]  Neil J. Gunther,et al.  The Practical Performance Analyst: Performance-by-Design Techniques for Distributed Systems , 1997 .

[54]  Giovanna Castellano,et al.  An iterative pruning algorithm for feedforward neural networks , 1997, IEEE Trans. Neural Networks.

[55]  David W. Aha,et al.  Simplifying decision trees: A survey , 1997, The Knowledge Engineering Review.

[56]  Adwait Ratnaparkhi,et al.  A Simple Introduction to Maximum Entropy Models for Natural Language Processing , 1997 .

[57]  Howard J. Hamilton,et al.  Machine Learning of Credible Classifications , 1997, Australian Joint Conference on Artificial Intelligence.

[58]  Zijian Zheng,et al.  Constructing conjunctions using systematic search on decision trees , 1998, Knowl. Based Syst..

[59]  Thomas G. Dietterich Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms , 1998, Neural Computation.

[60]  Yoav Freund,et al.  Large Margin Classification Using the Perceptron Algorithm , 1998, COLT' 98.

[61]  Ricardo A. Baeza-Yates,et al.  A Practical q -Gram Index for Text Retrieval Allowing Errors , 2018, CLEI Electron. J..

[62]  Sheng Liang,et al.  Dynamic class loading in the Java virtual machine , 1998, OOPSLA '98.

[63]  J. C. BurgesChristopher A Tutorial on Support Vector Machines for Pattern Recognition , 1998 .

[64]  Ian H. Witten,et al.  Generating Accurate Rule Sets Without Global Optimization , 1998, ICML.

[65]  Susan T. Dumais,et al.  A Bayesian Approach to Filtering Junk E-Mail , 1998, AAAI 1998.

[66]  Carlos Bento,et al.  A Metric for Selection of the Most Promising Rules , 1998, PKDD.

[67]  David A. Bell,et al.  Learning Bayesian networks from data: An information-theory based approach , 2002, Artif. Intell..

[68]  Stephanie Forrest,et al.  Principles of a computer immune system , 1998, NSPW '97.

[69]  Ramón López de Mántaras,et al.  Machine Learning from Examples: Inductive and Lazy Methods , 1998, Data Knowl. Eng..

[70]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[71]  L. Cloutier Une approche multi-agents par conventions et contrats pour la coordination de l'entreprise manufacturière réseau , 1999 .

[72]  Anna R. Karlin,et al.  Potentials and limitations of fault-based Markov prefetching for virtual memory pages , 1999, SIGMETRICS '99.

[73]  Yun Peng,et al.  Modeling agent conversations with colored petri nets , 1999 .

[74]  B. Scholkopf,et al.  Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[75]  Nick Cercone,et al.  Discretization of Continuous Attributes for Learning Classification Rules , 1999, PAKDD.

[76]  Nello Cristianini,et al.  Controlling the Sensitivity of Support Vector Machines , 1999 .

[77]  Martin Zirngibl,et al.  WDM cross-connect architectures with reduced complexity , 1999 .

[78]  Dorian Pyle,et al.  Data Preparation for Data Mining , 1999 .

[79]  Vladislav Rajkovic,et al.  Hierarchical multi-attribute models for decision support in the management of diabetic foot syndrome , 1999, MIE.

[80]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[81]  Amal El Fallah Seghrouchni,et al.  Une démarche méthodologique pour l'ingénierie des protocoles d'interaction , 1999, JFIADSMA.

[82]  Bernard Espinasse,et al.  Protocoles de coopération pour le réordonnancement d'atelier , 1999, JFIADSMA.

[83]  Nicholas R. Jennings,et al.  A methodology for agent-oriented analysis and design , 1999, AGENTS '99.

[84]  David McSherry,et al.  Strategic induction of decision trees , 1999, Knowl. Based Syst..

[85]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[86]  Tapio Elomaa The Biases of Decision Tree Pruning Strategies , 1999, IDA.

[87]  Yiyu Yao,et al.  Peculiarity Oriented Multi-database Mining , 1999, PKDD.

[88]  Judith E. Innes,et al.  Consensus Building and Complex Adaptive Systems , 1999 .

[89]  Andrea Bonarini,et al.  An Introduction to Learning Fuzzy Classifier Systems , 1999, Learning Classifier Systems.

[90]  João Gama,et al.  Linear tree , 1999, Intell. Data Anal..

[91]  Chandra Krintz,et al.  Reducing transfer delay using Java class file splitting and prefetching , 1999, OOPSLA '99.

[92]  Yiyu Yao,et al.  An Analysis of Quantitative Measures Associated with Rules , 1999, PAKDD.

[93]  29th Applied Image Pattern Recognition Workshop (AIPR 2000), 16-18 October 2000, Washington, DC, USA, Proceedings , 2000, AIPR.

[94]  Haiming Lu,et al.  Hierarchical genetic algorithm based neural network design , 2000, 2000 IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks. Proceedings of the First IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks (Cat. No.00.

[95]  Chin Wen Cheong,et al.  Fuzzy linguistic decision analysis for Web server system future planning , 2000, 2000 TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat. No.00CH37119).

[96]  W. Walker Policy analysis: a systematic approach to supporting policymaking in the public sector , 2000 .

[97]  BruhaIvan From machine learning to knowledge discovery: Survey of preprocessing and postprocessing , 2000 .

[98]  Nick Cercone,et al.  Rule Quality Measures Improve the Accuracy of Rule Induction: An Experimental Approach , 2000, ISMIS.

[99]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[100]  Guoqiang Peter Zhang,et al.  Neural networks for classification: a survey , 2000, IEEE Trans. Syst. Man Cybern. Part C.

[101]  Peter A. Flach,et al.  The role of feature construction in inductive rule learning , 2000 .

[102]  Asim Roy,et al.  On connectionism, rule extraction, and brain-like learning , 2000, IEEE Trans. Fuzzy Syst..

[103]  Leszek Plaskota,et al.  Information complexity of neural networks , 2000, Neural Networks.

[104]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[105]  José Meseguer Rewriting Logic and Maude: a Wide-Spectrum Semantic Framework for Object-Based Distributed Systems , 2000, FMOODS.

[106]  Pieter W. G. Bots,et al.  Decision support in the public sector , 2000 .

[107]  Jihoon Yang,et al.  Constructive Neural-Network Learning Algorithms for Pattern Classification , 2000 .

[108]  Philip Wadler,et al.  An Algebra for XML Query , 2000, FSTTCS.

[109]  Richard J. Lipton,et al.  On the complexity of intersecting finite state automata , 2000, Proceedings 15th Annual IEEE Conference on Computational Complexity.

[110]  Ivan Bruha,et al.  From machine learning to knowledge discovery: Survey of preprocessing and postprocessing , 2000, Intell. Data Anal..

[111]  N. Franchesquin Modélisation et simulation multi-agents d'écosystèmes anthropisés : une application à la gestion hydraulique en Grande Camargue , 2001 .

[112]  Wenfei Fan,et al.  Keys for XML , 2001, WWW '01.

[113]  Miroslav Kubat,et al.  A reduction technique for nearest-neighbor classification: Small groups of examples , 2001, Intell. Data Anal..

[114]  Karin Hansen Local Councillors Between Local "Government" and Local "Governance" , 2001 .

[115]  Russell Greiner,et al.  Learning Bayesian Belief Network Classifiers: Algorithms and System , 2001, Canadian Conference on AI.

[116]  Abraham Bernstein,et al.  An Intelligent Assistant for the Knowledge Discovery Process , 2001, IJCAI 2001.

[117]  Takahira Yamaguchi,et al.  Knowledge Discovery Support from a Meningoencephalitis Dataset Using an Automatic Composition Tool for Inductive Applications , 2001, JSAI Workshops.

[118]  Robert G. Cowell,et al.  Conditions Under Which Conditional Independence and Scoring Methods Lead to Identical Selection of Bayesian Network Models , 2001, UAI.

[119]  Gabriel M. Kuper,et al.  A unified constraint model for XML , 2001, WWW '01.

[120]  M. O. Tokhi,et al.  Training neural networks: backpropagation vs. genetic algorithms , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[121]  Christopher K. I. Williams,et al.  Comparing Bayesian neural network algorithms for classifying segmented outdoor images , 2001, Neural Networks.

[122]  Harri Ehtamo,et al.  Evaluating a Framework for Multi-Stakeholder Decision Support in Water Resources Management , 2001 .

[123]  Trishul M. Chilimbi Efficient representations and abstractions for quantifying and exploiting data reference locality , 2001, PLDI '01.

[124]  Derick Wood,et al.  Regular tree and regular hedge languages over unranked alphabets , 2001 .

[125]  Wenfei Fan,et al.  Keys with Upward Wildcards for XML , 2001, DEXA.

[126]  Takashi Yoneyama,et al.  Specification of Training Sets and the Number of Hidden Neurons for Multilayer Perceptrons , 2001, Neural Computation.

[127]  Tommy W. S. Chow,et al.  Feedforward networks training speed enhancement by optimal initialization of the synaptic coefficients , 2001, IEEE Trans. Neural Networks.

[128]  Kenrick J. Mock An experimental framework for email categorization and management , 2001, SIGIR '01.

[129]  Johannes Fürnkranz,et al.  Round Robin Rule Learning , 2001, ICML.

[130]  Erwan Tranvouez,et al.  IAD et ordonnancement, une approche coopérative du réordonnancement par systèmes multi-agents , 2001 .

[131]  Lakhmi C. Jain,et al.  Radial Basis Function Networks 2: New Advances in Design , 2001 .

[132]  Marc G. Genton,et al.  Classes of Kernels for Machine Learning: A Statistics Perspective , 2002, J. Mach. Learn. Res..

[133]  P. B. Chu,et al.  MEMS: the path to large optical crossconnects , 2002 .

[134]  David Maxwell Chickering,et al.  Optimal Structure Identification With Greedy Search , 2002, J. Mach. Learn. Res..

[135]  Jaideep Srivastava,et al.  Selecting the right interestingness measure for association patterns , 2002, KDD.

[136]  Narciso Martí-Oliet,et al.  Maude: specification and programming in rewriting logic , 2002, Theor. Comput. Sci..

[137]  Susan B. Davidson,et al.  Constraints preserving schema mapping from XML to relations , 2002, WebDB.

[138]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques with Java implementations , 2002, SGMD.

[139]  JapkowiczNathalie,et al.  The class imbalance problem: A systematic study , 2002 .

[140]  Salvatore Ruggieri,et al.  Efficient C4.5 , 2002, IEEE Trans. Knowl. Data Eng..

[141]  Amal El Fallah Seghrouchni,et al.  Open protocol design for complex interactions in multi-agent systems , 2002, AAMAS '02.

[142]  A. Lucia,et al.  Multi-criteria decision support system and Data Warehouse for designing and monitoring sustainable industrial strategies an Italian case study , 2002 .

[143]  Clinton Randy Giles,et al.  The Lucent LambdaRouter: MEMS technology of the future here today , 2002, IEEE Commun. Mag..

[144]  Christos Schizas,et al.  Artificial Neural Network Learning: A Comparative Review , 2002, SETN.

[145]  José Salvador Sánchez,et al.  On Filtering the Training Prototypes in Nearest Neighbour Classification , 2002, CCIA.

[146]  Susan B. Davidson,et al.  XKvalidator: a constraint validator for XML , 2002, CIKM '02.

[147]  Russell A. Chipman,et al.  Advanced components and sub-system solutions for 40 Gb/s transmission , 2002 .

[148]  Lucien Duckstein,et al.  Comparison of fuzzy numbers using a fuzzy distance measure , 2002, Fuzzy Sets Syst..

[149]  Susan B. Davidson,et al.  Validating Constraints in XML , 2002 .

[150]  Michael G. Madden,et al.  The Performance of Bayesian Network Classifiers Constructed using Different Techniques , 2003 .

[151]  Alex Alves Freitas,et al.  AISEC: an artificial immune system for e-mail classification , 2003, IEEE Congress on Evolutionary Computation.

[152]  Artificial Immune Systems , 2009, Lecture Notes in Computer Science.

[153]  Matthias Klusch,et al.  Agent-Based Distributed Data Mining: The KDEC Scheme , 2003, AgentLink.

[154]  Nicholas R. Jennings,et al.  Developing Agent Interaction Protocols Using Graphical and Logical Methodologies , 2003, PROMAS.

[155]  G. Kersten Analysis e-Democracy and Participatory Decision Processes : Lessons from e-Negotiation Experiments , 2003 .

[156]  Christos Bouras,et al.  An electronic voting service to support decision-making in local government , 2003, Telematics Informatics.

[157]  Gustavo E. A. P. A. Batista,et al.  An analysis of four missing data treatment methods for supervised learning , 2003, Appl. Artif. Intell..

[158]  Padraig Cunningham,et al.  Explaining the output of ensembles in medical decision support on a case by case basis , 2003, Artif. Intell. Medicine.

[159]  J. Gammack,et al.  E-democracy and public participation: a global overview of policy and activity , 2003 .

[160]  Åke Grönlund,et al.  e‐democracy: in search of tools and methods for effective participation , 2003 .

[161]  Yaxin Bi,et al.  KNN Model-Based Approach in Classification , 2003, OTM.

[162]  Luis M. de Campos,et al.  Searching for Bayesian Network Structures in the Space of Restricted Acyclic Partially Directed Graphs , 2011, J. Artif. Intell. Res..

[163]  Béatrice Bouchou-Markhoff,et al.  Updates and Incremental Validation of XML Documents , 2003, DBPL.

[164]  Rajeev Rastogi,et al.  Capturing both types and constraints in data integration , 2003, SIGMOD '03.

[165]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[166]  Le Zhang,et al.  Filtering Junk Mail with a Maximum Entropy Model , 2003 .

[167]  I. Robertson,et al.  Supporting societal decision making: a process perspective , 2003 .

[168]  Remco R. Bouckaert,et al.  Choosing Between Two Learning Algorithms Based on Calibrated Tests , 2003, ICML.

[169]  Tony White,et al.  Developing an Immunity to Spam , 2003, GECCO.

[170]  Geoffrey I. Webb,et al.  On Why Discretization Works for Naive-Bayes Classifiers , 2003, Australian Conference on Artificial Intelligence.

[171]  Nobuhiro Yugami,et al.  Effects of domain characteristics on instance-based learning algorithms , 2003, Theor. Comput. Sci..

[172]  Susan B. Davidson,et al.  On the updatability of XML views over relational databases , 2003, WebDB.

[173]  Tony R. Martinez,et al.  Reduction Techniques for Instance-Based Learning Algorithms , 2000, Machine Learning.

[174]  Ravi Kothari,et al.  A Classification Paradigm for Distributed Vertically Partitioned Data , 2004, Neural Computation.

[175]  Peter Auer,et al.  Tracking the Best Disjunction , 1998, Machine Learning.

[176]  Claudia Sarrocco WSIS THEMATIC MEETING ON COUNTERING SPAM CURBING SPAM VIA TECHNICAL MEASURES : AN OVERVIEW , 2004 .

[177]  Yong Wang,et al.  Using Model Trees for Classification , 1998, Machine Learning.

[178]  Tapio Elomaa,et al.  General and Efficient Multisplitting of Numerical Attributes , 1999, Machine Learning.

[179]  Vikas Arora,et al.  Query Rewrite for XML in Oracle XML DB , 2004, VLDB.

[180]  David W. Aha,et al.  A Review and Empirical Evaluation of Feature Weighting Methods for a Class of Lazy Learning Algorithms , 1997, Artificial Intelligence Review.

[181]  Wei-Yin Loh,et al.  A Comparison of Prediction Accuracy, Complexity, and Training Time of Thirty-Three Old and New Classification Algorithms , 2000, Machine Learning.

[182]  Sreerama K. Murthy,et al.  Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey , 1998, Data Mining and Knowledge Discovery.

[183]  Georgios Paliouras,et al.  A Memory-Based Approach to Anti-Spam Filtering for Mailing Lists , 2004, Information Retrieval.

[184]  Yannis Papakonstantinou,et al.  Incremental validation of XML documents , 2003, TODS.

[185]  Nicholas R. Jennings,et al.  The Gaia Methodology for Agent-Oriented Analysis and Design , 2000, Autonomous Agents and Multi-Agent Systems.

[186]  Paul E. Utgoff,et al.  Decision Tree Induction Based on Efficient Tree Restructuring , 1997, Machine Learning.

[187]  Thomas G. Dietterich An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization , 2000, Machine Learning.

[188]  Koby Crammer,et al.  On the Learnability and Design of Output Codes for Multiclass Problems , 2002, Machine Learning.

[189]  Thomas Reinartz,et al.  A Unifying View on Instance Selection , 2002, Data Mining and Knowledge Discovery.

[190]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[191]  Shyhtsun Felix Wu,et al.  On Attacking Statistical Spam Filters , 2004, CEAS.

[192]  Béatrice Bouchou-Markhoff,et al.  Incremental Constraint Checking for XML Documents , 2004, XSym.

[193]  Avrim Blum,et al.  Empirical Support for Winnow and Weighted-Majority Algorithms: Results on a Calendar Scheduling Domain , 2004, Machine Learning.

[194]  Marc-Philippe Huget,et al.  Representing agent interaction protocols with agent UML , 2004, Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004..

[195]  Marcelo Arenas,et al.  A normal form for XML documents , 2004, TODS.

[196]  Yoshinori Sato,et al.  Comparison between objective interestingness measures and real human interest in medical data mining , 2004 .

[197]  Kyuseok Shim,et al.  PUBLIC: A Decision Tree Classifier that Integrates Building and Pruning , 1998, Data Mining and Knowledge Discovery.

[198]  Pedro M. Domingos,et al.  On the Optimality of the Simple Bayesian Classifier under Zero-One Loss , 1997, Machine Learning.

[199]  Takahira Yamaguchi,et al.  Constructive Meta-learning with Machine Learning Method Repositories , 2004, International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems.

[200]  Sung Wook Baik,et al.  A Decision Tree Algorithm for Distributed Data Mining: Towards Network Intrusion Detection , 2004, ICCSA.

[201]  João Gama,et al.  On Data and Algorithms: Understanding Inductive Performance , 2004, Machine Learning.

[202]  Peter Clark,et al.  The CN2 Induction Algorithm , 1989, Machine Learning.

[203]  Yoshua Bengio,et al.  Inference for the Generalization Error , 1999, Machine Learning.

[204]  João Gama,et al.  Cascade Generalization , 2000, Machine Learning.

[205]  Shaul Markovitch,et al.  Feature Generation Using General Constructor Functions , 2002, Machine Learning.

[206]  Zijian Zheng,et al.  Constructing X-of-N Attributes for Decision Tree Learning , 2000, Machine Learning.

[207]  Sihem Amer-Yahia,et al.  A comprehensive solution to the XML-to-relational mapping problem , 2004, WIDM '04.

[208]  Johannes Fürnkranz,et al.  Pruning Algorithms for Rule Learning , 1997, Machine Learning.

[209]  Robert C. Holte,et al.  Very Simple Classification Rules Perform Well on Most Commonly Used Datasets , 1993, Machine Learning.

[210]  Heikki Helin,et al.  Using Interaction Protocols in Distributed Construction Processes , 2004, ICEIS.

[211]  JOHANNES GEHRKE,et al.  RainForest—A Framework for Fast Decision Tree Construction of Large Datasets , 1998, Data Mining and Knowledge Discovery.

[212]  Takahira Yamaguchi,et al.  Evaluation of Rule Interestingness Measures with a Clinical Dataset on Hepatitis , 2004, PKDD.

[213]  Remco R. Bouckaert Naive Bayes Classifiers That Perform Well with Continuous Variables , 2004, Australian Conference on Artificial Intelligence.

[214]  Chris Mellish,et al.  Advances in Instance Selection for Instance-Based Learning Algorithms , 2002, Data Mining and Knowledge Discovery.

[215]  Victoria J. Hodge,et al.  A Survey of Outlier Detection Methodologies , 2004, Artificial Intelligence Review.

[216]  Nir Friedman,et al.  Being Bayesian About Network Structure. A Bayesian Approach to Structure Discovery in Bayesian Networks , 2004, Machine Learning.

[217]  Nir Friedman,et al.  Bayesian Network Classifiers , 1997, Machine Learning.

[218]  Carlos Soares,et al.  Ranking Learning Algorithms: Using IBL and Meta-Learning on Accuracy and Time Results , 2003, Machine Learning.

[219]  Gita Alaghband,et al.  Streaming Java Applications to Mobile Computing Devices , 2004, International Conference on Wireless Networks.

[220]  Tony A. Meyer,et al.  SpamBayes: Effective open-source, Bayesian based, email classification system , 2004, CEAS.

[221]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[222]  Nicholas R. Jennings,et al.  Verifying the contract net protocol: a case study in interaction protocol and agent communication semantics , 2004 .

[223]  Huan Liu,et al.  Efficient Feature Selection via Analysis of Relevance and Redundancy , 2004, J. Mach. Learn. Res..

[224]  Raymond J. Mooney,et al.  Symbolic and neural learning algorithms: An experimental comparison , 1991, Machine Learning.

[225]  Levent Özgür,et al.  Adaptive anti-spam filtering for agglutinative languages: a special case for Turkish , 2004, Pattern Recognit. Lett..

[226]  S. Sathiya Keerthi,et al.  Convergence of a Generalized SMO Algorithm for SVM Classifier Design , 2002, Machine Learning.

[227]  JOHANNES FÜRNKRANZ,et al.  Separate-and-Conquer Rule Learning , 1999, Artificial Intelligence Review.

[228]  Wee Kheng Leow,et al.  FERNN: An Algorithm for Fast Extraction of Rules from Neural Networks , 2004, Applied Intelligence.

[229]  Tony Lindgren Methods for Rule Conflict Resolution , 2004, ECML.

[230]  Victoria J. Hodge,et al.  A Survey of Outlier Detection Methodologies , 2004, Artificial Intelligence Review.

[231]  Houari A. Sahraoui,et al.  Adaptation dynamique des systèmes multi-agents basée sur le concept de méta-CATN , 2004, Conference on Research, Innovation and Vision for the Future in Computing & Communication Technologies.

[232]  Michael A. Roberto Why Making the Decisions the Right Way is More Important Than Making the Right Decisions , 2005 .

[233]  Stefanie Scherzinger,et al.  Attribute grammars for scalable query processing on XML streams , 2005, The VLDB Journal.

[234]  Barbara Catania,et al.  XML Data Stores: Emerging Practices , 2005, IEEE Internet Comput..

[235]  Gabriel M. Kuper,et al.  Structural properties of XPath fragments , 2003, Theor. Comput. Sci..

[236]  Murali Mani,et al.  Taxonomy of XML schema languages using formal language theory , 2005, TOIT.

[237]  Frank Neven,et al.  Attribute grammars for unranked trees as a query language for structured documents , 2005, J. Comput. Syst. Sci..

[238]  Matthew Arnold,et al.  A Survey of Adaptive Optimization in Virtual Machines , 2005, Proceedings of the IEEE.

[239]  Ricardo Vilalta,et al.  A Perspective View and Survey of Meta-Learning , 2002, Artificial Intelligence Review.

[240]  G. DeFriese,et al.  The New York Times , 2020, Publishing for Libraries.

[241]  Takahira Yamaguchi,et al.  Implementing an Integrated Time-Series Data Mining Environment Based on Temporal Pattern Extraction Methods: A Case Study of an Interferon Therapy Risk Mining for Chronic Hepatitis , 2006, JSAI Workshops.

[242]  John Hallam,et al.  IEEE International Joint Conference on Neural Networks , 2005 .

[243]  Igor Kononenko,et al.  Computerized segmentation of whole-body bone scintigrams and its use in automated diagnostics , 2005, Comput. Methods Programs Biomed..

[244]  Johannes Fürnkranz,et al.  ROC ‘n’ Rule Learning—Towards a Better Understanding of Covering Algorithms , 2005, Machine Learning.

[245]  Alin Deutsch,et al.  XML queries and constraints, containment and reformulation , 2005, Theor. Comput. Sci..

[246]  Michael Benedikt,et al.  Adding Updates to XQuery: Semantics, Optimization, and Static Analysis , 2005, XIME-P.

[247]  Donald F. Norris,et al.  A New Agenda for e-Democracy , 2005 .

[248]  Stéphane Bressan,et al.  XShreX: Maintaining Integrity Constraints in the Mapping of XML Schema to Relational , 2006, 17th International Workshop on Database and Expert Systems Applications (DEXA'06).

[249]  Christopher Ré,et al.  XQuery!: An XML Query Language with Side Effects , 2006, EDBT Workshops.

[250]  Suzanne Daneau,et al.  Action , 2020, Remaking the Real Economy.

[251]  D. Heckerman,et al.  A Bayesian Approach to Causal Discovery , 2006 .

[252]  Ahmed Khorsi,et al.  An Overview of Content-Based Spam Filtering Techniques , 2007, Informatica.

[253]  Wenfei Fan,et al.  Propagating XML constraints to relations , 2007, J. Comput. Syst. Sci..

[254]  Onur Dikmen,et al.  Parallel univariate decision trees , 2007, Pattern Recognit. Lett..

[255]  Luka Sajn,et al.  Multi-resolution Parameterization for Texture Classification and Its Use in the Scintigraphic Image Analysis , 2007, Informatica.

[256]  Lakhmi C. Jain,et al.  Introduction to Bayesian Networks , 2008 .

[257]  Sunita Sarawagi Learning with Graphical Models , 2008 .

[258]  Zhi-Hua Zhou,et al.  Rule extraction: Using neural networks or for neural networks? , 2004, Journal of Computer Science and Technology.