Adaptive isogeometric finite element analysis of steady‐state groundwater flow

Summary Numerical challenges occur in the simulation of groundwater flow problems because of complex boundary conditions, varying material properties, presence of sources or sinks in the flow domain, or a combination of these. In this paper, we apply adaptive isogeometric finite element analysis using locally refined (LR) B-splines to address these types of problems. The fundamentals behind isogeometric analysis and LR B-splines are briefly presented. Galerkin's method is applied to the standard weak formulation of the governing equation to derive the linear system of equations. A posteriori error estimates are calculated to identify which B-splines should be locally refined. The error estimates are calculated based on recovery of the L2-projected solution. The adaptive analysis method is first illustrated by performing simulation of benchmark problems with analytical solutions. Numerical applications to two-dimensional groundwater flow problems are then presented. The problems studied are flow around an impervious corner, flow around a cutoff wall, and flow in a heterogeneous medium. The convergence rates obtained with adaptive analysis using local refinement were, in general, observed to be of optimal order in contrast to simulations with uniform refinement. Copyright © 2015 John Wiley & Sons, Ltd.

[1]  W. D. Liam Finn Finite-Element Analysis of Seepage Through Dams , 1967 .

[2]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[3]  J. O. Duguid,et al.  Water movement through saturated-unsaturated porous media: a finite- element Galerkin model , 1975 .

[4]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[5]  George F. Pinder,et al.  A Finite‐Element Three‐Dimensional Groundwater (FE3DGW) Model for a Multiaquifer System , 1984 .

[6]  Trond Kvamsdal,et al.  Object-Oriented Programming in Field Recovery and Error Estimation , 1999, Engineering with Computers.

[7]  S. P. Neuman,et al.  Finite Element Method of Analyzing Steady Seepage with a Free Surface , 1970 .

[8]  Gour-Tsyh Yeh,et al.  On the computation of Darcian velocity and mass balance in the finite element modeling of groundwater flow , 1981 .

[9]  Knut Morten Okstad,et al.  Error estimation based on Superconvergent Patch Recovery using statically admissible stress fields , 1998 .

[10]  James A. Liggett,et al.  Singularities in Darcy Flow Through Porous Media , 1980 .

[11]  D. Liang,et al.  A finite element method for a unidimensional single-phase nonlinear free boundary problem in groundwater flow , 1999 .

[12]  Peter K. Kitanidis,et al.  Adaptive-grid simulation of groundwater flow in heterogeneous aquifers , 1999 .

[13]  F. Smedt,et al.  Numerical solution of 3-D groundwater flow involving free boundaries by a fixed finite element method , 1997 .

[14]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[15]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[16]  Trond Kvamsdal,et al.  Simple a posteriori error estimators in adaptive isogeometric analysis , 2015, Comput. Math. Appl..

[17]  Trond Kvamsdal,et al.  Goal oriented error estimators for Stokes equations based on variationally consistent postprocessing , 2003 .

[18]  Knut M. OkstadSINTEF ERROR ESTIMATOR FOR RECOVERED SURFACE FORCES IN INCOMPRESSIBLE NAVIER{STOKES FLOW , 1998 .

[19]  G. Pinder,et al.  Application of Galerkin's Procedure to aquifer analysis , 1972 .

[20]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[21]  L. Zouhri,et al.  Modelling of groundwater flow in heterogeneous porous media by finite element method , 2012 .

[22]  Ernst Rank,et al.  An adaptive finite element approach for the free surface seepage problem , 1986 .

[23]  Yu-xin Jie,et al.  Application of NEM in seepage analysis with a free surface , 2013, Math. Comput. Simul..

[24]  William F. Mitchell,et al.  A Collection of 2D Elliptic Problems for Testing Adaptive Algorithms , 2010 .

[25]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[26]  Trond Kvamsdal,et al.  Isogeometric analysis using LR B-splines , 2014 .

[27]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[28]  Trond Kvamsdal,et al.  Superconvergent patch recovery and a posteriori error estimation technique in adaptive isogeometric analysis , 2017 .

[29]  Kourakos George,et al.  Simulation of groundwater flow based on adaptive mesh refinement , 2014 .

[31]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[32]  J. C. Bruch,et al.  Performance analysis tools applied to a finite element adaptive mesh free boundary seepage parallel algorithm , 2005 .

[33]  Kjell Magne Mathisen,et al.  Superconvergent Patch Recovery for plate problems using statically admissible stress resultant fields , 1999 .

[34]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[35]  Trond Kvamsdal,et al.  Object-Oriented Field Recovery and Error Estimation in Finite Element Methods , 2000 .

[36]  Nahidh Hamid Sharif,et al.  Adaptive ICT-Procedure for Non-linear Seepage Flows with Free Surface in Porous Media , 2002 .

[37]  V. J. Burkley,et al.  Adaptive error analysis in seepage problems , 1991 .

[38]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[39]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[40]  J. Botha,et al.  Galerkin finite element method and the groundwater flow equation: 1. Convergence of the method , 1982 .

[41]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .