Pinning control for complex networks of linearly coupled oscillators

In this paper, we study the pinning control of networks of coupled oscillators using master stability-like function. The assignment of controllers is performed on the basis of collective dynamics of the network and local and coupling dynamics through the Lyapunov direct method. We assume that the controllers' gain are constrained and we show that our results recover existing ones, when this constraint is removed. Numerical results verify that in more realistic scenarios our method assigns pinning points much more effectively compared to existing approaches.

[1]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[2]  Jürgen Kurths,et al.  Synchronization in small-world networks. , 2008, Chaos.

[3]  A. Winfree Biological rhythms and the behavior of populations of coupled oscillators. , 1967, Journal of theoretical biology.

[4]  Ji Xiang,et al.  On the V-stability of complex dynamical networks , 2007, Autom..

[5]  Mario di Bernardo,et al.  On QUAD, Lipschitz, and Contracting Vector Fields for Consensus and Synchronization of Networks , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  Adilson E Motter,et al.  Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? , 2003, Physical review letters.

[7]  Michael William Newman,et al.  The Laplacian spectrum of graphs , 2001 .

[8]  Guanrong Chen,et al.  Pinning a complex dynamical network to its equilibrium , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[9]  Adilson E. Motter,et al.  Bounding network spectra for network design , 2007, 0705.0089.

[10]  M. di Bernardo,et al.  Pinning control of complex networks via edge snapping. , 2011, Chaos.

[11]  Tianping Chen,et al.  Pinning Complex Networks by a Single Controller , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[12]  R. Merris Laplacian graph eigenvectors , 1998 .

[13]  M. Cross,et al.  Pinning control of spatiotemporal chaos , 1997, chao-dyn/9705001.

[14]  T. Carroll,et al.  Master Stability Functions for Synchronized Coupled Systems , 1998 .

[15]  Xiang Li,et al.  Pinning a complex dynamical network to its equilibrium , 2004, IEEE Trans. Circuits Syst. I Regul. Pap..

[16]  Maurizio Porfiri,et al.  Criteria for global pinning-controllability of complex networks , 2008, Autom..

[17]  Celso Grebogi,et al.  Using small perturbations to control chaos , 1993, Nature.

[18]  M. Newman,et al.  Scaling and percolation in the small-world network model. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.

[20]  Xiao Fan Wang,et al.  Synchronization in Small-World Dynamical Networks , 2002, Int. J. Bifurc. Chaos.

[21]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[22]  Scott,et al.  Stabilizing and characterizing unstable states in high-dimensional systems from time series. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  Wenwu Yu,et al.  On pinning synchronization of complex dynamical networks , 2009, Autom..