Markov chain Monte Carlo inference for Markov jump processes via the linear noise approximation

Bayesian analysis for Markov jump processes (MJPs) is a non-trivial and challenging problem. Although exact inference is theoretically possible, it is computationally demanding, thus its applicability is limited to a small class of problems. In this paper, we describe the application of Riemann manifold Markov chain Monte Carlo (MCMC) methods using an approximation to the likelihood of the MJP that is valid when the system modelled is near its thermodynamic limit. The proposed approach is both statistically and computationally efficient whereas the convergence rate and mixing of the chains allow for fast MCMC inference. The methodology is evaluated using numerical simulations on two problems from chemical kinetics and one from systems biology.

[1]  D. Gillespie The chemical Langevin equation , 2000 .

[2]  G. Roberts,et al.  Langevin Diffusions and Metropolis-Hastings Algorithms , 2002 .

[3]  Mark Girolami,et al.  Statistical analysis of nonlinear dynamical systems using differential geometric sampling methods , 2011, Interface Focus.

[4]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[5]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[6]  M. Girolami,et al.  Inferring Signaling Pathway Topologies from Multiple Perturbation Measurements of Specific Biochemical Species , 2010, Science Signaling.

[7]  Michael P H Stumpf,et al.  Sensitivity, robustness, and identifiability in stochastic chemical kinetics models , 2011, Proceedings of the National Academy of Sciences.

[8]  Darren J. Wilkinson,et al.  Bayesian inference for a discretely observed stochastic kinetic model , 2008, Stat. Comput..

[9]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[10]  Radford M. Neal Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .

[11]  A. Kennedy,et al.  Hybrid Monte Carlo , 1988 .

[12]  David A. Rand,et al.  Bayesian inference for dynamic transcriptional regulation; the Hes1 system as a case study , 2007, Bioinform..

[13]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[14]  David A. Rand,et al.  Bayesian inference of biochemical kinetic parameters using the linear noise approximation , 2009, BMC Bioinformatics.

[15]  Daniel T Gillespie,et al.  Stochastic simulation of chemical kinetics. , 2007, Annual review of physical chemistry.

[16]  D. Gillespie A rigorous derivation of the chemical master equation , 1992 .

[17]  D. Gillespie,et al.  Deterministic limit of stochastic chemical kinetics. , 2009, The journal of physical chemistry. B.

[18]  W. Kühnel Differential Geometry: Curves - Surfaces - Manifolds , 2002 .

[19]  J. Rosenthal,et al.  Optimal scaling of discrete approximations to Langevin diffusions , 1998 .

[20]  G. Roberts,et al.  On inference for partially observed nonlinear diffusion models using the Metropolis–Hastings algorithm , 2001 .

[21]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[22]  Tania Nolan,et al.  Quantification of mRNA using real-time RT-PCR , 2006, Nature Protocols.

[23]  Darren J Wilkinson,et al.  Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo , 2011, Interface Focus.

[24]  D. Gillespie,et al.  Linear noise approximation is valid over limited times for any chemical system that is sufficiently large. , 2012, IET systems biology.

[25]  Christophe Andrieu,et al.  A tutorial on adaptive MCMC , 2008, Stat. Comput..

[26]  M. Spencer,et al.  CONTINUOUS‐TIME MARKOV MODELS FOR SPECIES INTERACTIONS , 2005 .

[27]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[28]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[29]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[30]  Andreas Hellander,et al.  A Hierarchy of Approximations of the Master Equation Scaled by a Size Parameter , 2008, J. Sci. Comput..

[31]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[32]  Shun-ichi Amari,et al.  Methods of information geometry , 2000 .

[33]  Heikki Haario,et al.  Componentwise adaptation for high dimensional MCMC , 2005, Comput. Stat..

[34]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[35]  A. Adas,et al.  Traffic models in broadband networks , 1997, IEEE Commun. Mag..

[36]  N. G. V. Kappen The Diffusion Approximation for Markov Processes , 1982 .