Markov chain Monte Carlo inference for Markov jump processes via the linear noise approximation
暂无分享,去创建一个
[1] D. Gillespie. The chemical Langevin equation , 2000 .
[2] G. Roberts,et al. Langevin Diffusions and Metropolis-Hastings Algorithms , 2002 .
[3] Mark Girolami,et al. Statistical analysis of nonlinear dynamical systems using differential geometric sampling methods , 2011, Interface Focus.
[4] A. Gelman,et al. Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .
[5] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[6] M. Girolami,et al. Inferring Signaling Pathway Topologies from Multiple Perturbation Measurements of Specific Biochemical Species , 2010, Science Signaling.
[7] Michael P H Stumpf,et al. Sensitivity, robustness, and identifiability in stochastic chemical kinetics models , 2011, Proceedings of the National Academy of Sciences.
[8] Darren J. Wilkinson,et al. Bayesian inference for a discretely observed stochastic kinetic model , 2008, Stat. Comput..
[9] D. Sherrington. Stochastic Processes in Physics and Chemistry , 1983 .
[10] Radford M. Neal. Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .
[11] A. Kennedy,et al. Hybrid Monte Carlo , 1988 .
[12] David A. Rand,et al. Bayesian inference for dynamic transcriptional regulation; the Hes1 system as a case study , 2007, Bioinform..
[13] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .
[14] David A. Rand,et al. Bayesian inference of biochemical kinetic parameters using the linear noise approximation , 2009, BMC Bioinformatics.
[15] Daniel T Gillespie,et al. Stochastic simulation of chemical kinetics. , 2007, Annual review of physical chemistry.
[16] D. Gillespie. A rigorous derivation of the chemical master equation , 1992 .
[17] D. Gillespie,et al. Deterministic limit of stochastic chemical kinetics. , 2009, The journal of physical chemistry. B.
[18] W. Kühnel. Differential Geometry: Curves - Surfaces - Manifolds , 2002 .
[19] J. Rosenthal,et al. Optimal scaling of discrete approximations to Langevin diffusions , 1998 .
[20] G. Roberts,et al. On inference for partially observed nonlinear diffusion models using the Metropolis–Hastings algorithm , 2001 .
[21] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[22] Tania Nolan,et al. Quantification of mRNA using real-time RT-PCR , 2006, Nature Protocols.
[23] Darren J Wilkinson,et al. Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo , 2011, Interface Focus.
[24] D. Gillespie,et al. Linear noise approximation is valid over limited times for any chemical system that is sufficiently large. , 2012, IET systems biology.
[25] Christophe Andrieu,et al. A tutorial on adaptive MCMC , 2008, Stat. Comput..
[26] M. Spencer,et al. CONTINUOUS‐TIME MARKOV MODELS FOR SPECIES INTERACTIONS , 2005 .
[27] P. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .
[28] N. Kampen,et al. Stochastic processes in physics and chemistry , 1981 .
[29] B. Øksendal. Stochastic differential equations : an introduction with applications , 1987 .
[30] Andreas Hellander,et al. A Hierarchy of Approximations of the Master Equation Scaled by a Size Parameter , 2008, J. Sci. Comput..
[31] Christian P. Robert,et al. Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .
[32] Shun-ichi Amari,et al. Methods of information geometry , 2000 .
[33] Heikki Haario,et al. Componentwise adaptation for high dimensional MCMC , 2005, Comput. Stat..
[34] W. Wong,et al. The calculation of posterior distributions by data augmentation , 1987 .
[35] A. Adas,et al. Traffic models in broadband networks , 1997, IEEE Commun. Mag..
[36] N. G. V. Kappen. The Diffusion Approximation for Markov Processes , 1982 .