Josephson voltage standards as toolkit for precision metrological applications at PTB

About 60 years after the discovery of the Josephson effect, electrical DC voltage calibrations are routinely performed worldwide—mostly using automated Josephson voltage standards (JVSs). Nevertheless, the field of electrical quantum voltage metrology is still propagating towards AC applications. In the past 10 years the fabrication of highly integrated arrays containing more than 50 000 or even 300 000 junctions has achieved a very robust level providing highly functional devices. Such reliable Josephson arrays are the basis for many novel applications mainly focussing on precision AC measurements for signal frequencies up to 500 kHz. Two versions of quantum AC standards are being employed. Programmable JVS, based on series arrays divided into subarrays, reach amplitudes up to 20 V and usually are used as quantum voltage reference in measurement systems. Pulse driven arrays reach amplitudes up to 1 V or even 4 V and are typically used as Josephson arbitrary waveform synthesizers. This paper summarizes the principal contributions from Physikalisch-Technische Bundesanstalt to the present state of JVS with particular focus on developments for precision metrological applications and our proof-of-concept demonstrations.

[1]  A. Fox,et al.  Bipolar Waveform Synthesis With an Optically Driven Josephson Arbitrary Waveform Synthesizer , 2022, IEEE Transactions on Applied Superconductivity.

[2]  D. Drung,et al.  Calibration of the dual-mode auto-calibrating resistance thermometer with few-parts-per-million uncertainty , 2021, Measurement Science and Technology.

[3]  K. Kuhlmann,et al.  Investigation of Broadband Wilkinson Power Dividers for Pulse-Driven Josephson Voltage Standards , 2021, IEEE Transactions on Applied Superconductivity.

[4]  J. Kohlmann,et al.  Stacked Josephson Junction Arrays for the Pulse-Driven AC Josephson Voltage Standard , 2021, IEEE Transactions on Applied Superconductivity.

[5]  R. Behr,et al.  An AC quantum voltmeter for frequencies up to 100 kHz using sub-sampling , 2021, Metrologia.

[6]  D. Drung,et al.  Dual-mode auto-calibrating resistance thermometer: A novel approach with Johnson noise thermometry. , 2021, The Review of scientific instruments.

[7]  D. Drung,et al.  Linearity measurements of critical Johnson noise thermometer components with low-distortion multitones from a Josephson arbitrary waveform synthesizer , 2020 .

[8]  R. Behr,et al.  A four-terminal-pair Josephson impedance bridge combined with a graphene-quantized Hall resistance , 2020 .

[9]  D. Drung,et al.  Measurement and analysis of high-frequency voltage errors in the Josephson arbitrary waveform synthesizer , 2020, Measurement Science and Technology.

[10]  T. Fordell,et al.  Driving a low critical current Josephson junction array with a mode-locked laser , 2020, Applied Physics Letters.

[11]  L. Callegaro,et al.  A fully digital bridge towards the realization of the farad from the quantum Hall effect , 2020, Metrologia.

[12]  R. Behr,et al.  Calibration of a precision current measurement system for high AC voltages using an AC quantum voltmeter , 2020, 2020 Conference on Precision Electromagnetic Measurements (CPEM).

[13]  N. Flowers-Jacobs,et al.  Calibration of an AC Voltage Source Using a Josephson Arbitrary Waveform Synthesizer at 4 V , 2020, 2020 Conference on Precision Electromagnetic Measurements (CPEM).

[14]  K. Kuhlmann,et al.  Development of RF Power Dividers for the Josephson Arbitrary Waveform Synthesizer , 2020, IEEE Transactions on Applied Superconductivity.

[15]  Ralf Behr,et al.  Characterization of a precision modular sinewave generator , 2020, Measurement Science and Technology.

[16]  H. Kral Boltzmann constant , 2020, Catalysis from A to Z.

[17]  Samuel P. Benz,et al.  Josephson Arbitrary Waveform Synthesizer as a Reference Standard for the Measurement of the Phase of Harmonics in Distorted Waveforms , 2019, IEEE Transactions on Instrumentation and Measurement.

[18]  Ralf Behr,et al.  Externally Referenced Current Source With Stability Down to 1 nA/A at 50 mA , 2019, IEEE Transactions on Instrumentation and Measurement.

[19]  P. Ohlckers,et al.  Pulsation of InGaAs Photodiodes in Liquid Helium for Driving Josephson Arrays in AC Voltage Realization , 2019, IEEE Transactions on Applied Superconductivity.

[20]  P. Ohlckers,et al.  Optical Pulse-Drive for the Pulse-Driven AC Josephson Voltage Standard , 2019, IEEE Transactions on Applied Superconductivity.

[21]  J. Underwood,et al.  Uncertainty analysis for ac–dc difference measurements with the AC Josephson voltage standard , 2018, Metrologia.

[22]  Alain Rüfenacht,et al.  Impact of the latest generation of Josephson voltage standards in ac and dc electric metrology , 2018, Metrologia.

[23]  F. Ahlers,et al.  Frequency-Dependent Verification of the Quantum Accuracy of a Quantum Voltage Noise Source , 2018, 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018).

[24]  Y. Amagai,et al.  Sampling Measurement of a 20-V RMS Sine Wave Using an Inductive Voltage Divider and an AC-Programmable Josephson Voltage Standard , 2018, 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018).

[25]  H. E. van den Brom,et al.  An Optoelectronic Pulse Drive for Quantum Voltage Synthesizer , 2018, 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018).

[26]  Per Ohlckers,et al.  Reliability study of fiber-coupled photodiode module for operation at 4 K , 2017, Microelectron. Reliab..

[27]  H. E. van den Brom,et al.  Mitigating voltage lead errors of an AC Josephson voltage standard by impedance matching , 2017 .

[28]  Rod White,et al.  An improved electronic determination of the Boltzmann constant by Johnson noise thermometry , 2017, Metrologia.

[29]  Thomas Hagen,et al.  A Josephson Impedance Bridge Based on Programmable Josephson Voltage Standards , 2017, IEEE Transactions on Instrumentation and Measurement.

[30]  Ralf Behr,et al.  A Precision Microvolt-Synthesizer Based on a Pulse-Driven Josephson Voltage Standard , 2017, IEEE Transactions on Instrumentation and Measurement.

[31]  P. Ohlckers,et al.  Packaging and Demonstration of Optical-Fiber-Coupled Photodiode Array for Operation at 4 K , 2017, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[32]  Ralf Behr,et al.  A novel two-terminal-pair pulse-driven Josephson impedance bridge linking a 10 nF capacitance standard to the quantized Hall resistance , 2017 .

[33]  Samuel P. Benz,et al.  Josephson Arbitrary Waveform Synthesis With Multilevel Pulse Biasing , 2017, IEEE Transactions on Applied Superconductivity.

[34]  H. Yamamori,et al.  Fabrication of Voltage Standard Circuits Utilizing a Serial–Parallel Power Divider , 2016, IEEE Transactions on Applied Superconductivity.

[35]  Stephan Schlamminger,et al.  The watt or Kibble balance: a technique for implementing the new SI definition of the unit of mass , 2016, Metrologia.

[36]  Andrew D. Koffman,et al.  Josephson-based full digital bridge for high-accuracy impedance comparisons , 2016, 2016 Conference on Precision Electromagnetic Measurements (CPEM 2016).

[37]  K. Coakley,et al.  Spectral model selection in the electronic measurement of the Boltzmann constant by Johnson noise thermometry , 2016, Metrologia.

[38]  Samuel P. Benz,et al.  Two-Volt Josephson Arbitrary Waveform Synthesizer Using Wilkinson Dividers , 2016, IEEE Transactions on Applied Superconductivity.

[39]  Samuel P. Benz,et al.  Zero-Compensation Method and Reduced Inductive Voltage Error for the AC Josephson Voltage Standard , 2015, IEEE Transactions on Applied Superconductivity.

[40]  Ralf Behr,et al.  Validation of a quantized-current source with 0.2 ppm uncertainty , 2015, 1506.05965.

[41]  Ralf Behr,et al.  Direct comparison of a 1 V Josephson arbitrary waveform synthesizer and an ac quantum voltmeter , 2015 .

[42]  N. Flowers-Jacobs,et al.  Performance Improvements for the NIST 1 V Josephson Arbitrary Waveform Synthesizer , 2015, IEEE Transactions on Applied Superconductivity.

[43]  R. Behr,et al.  Towards a 1 V Josephson Arbitrary Waveform Synthesizer , 2015, IEEE Transactions on Applied Superconductivity.

[44]  Marco Schubert,et al.  An AC Josephson Voltage Standard up to the Kilohertz Range Tested in a Calibration Laboratory , 2015, IEEE Transactions on Instrumentation and Measurement.

[45]  Samuel P. Benz,et al.  One-Volt Josephson Arbitrary Waveform Synthesizer , 2015, IEEE Transactions on Applied Superconductivity.

[46]  S. Benz,et al.  Improved electronic measurement of the Boltzmann constant by Johnson noise thermometry , 2014, 1501.00195.

[47]  J. Kohlmann,et al.  Microwave Design and Performance of PTB 10 V Circuits for the Programmable Josephson Voltage Standard , 2014 .

[48]  Samuel P. Benz,et al.  Pulse-Bias Electronics and Techniques for a Josephson Arbitrary Waveform Synthesizer , 2014, IEEE Transactions on Applied Superconductivity.

[49]  Ralf Behr,et al.  An ac quantum voltmeter based on a 10 V programmable Josephson array , 2013 .

[50]  R. Behr,et al.  NbSi Barrier Junctions Tuned for Metrological Applications up to 70 GHz: 20 V Arrays for Programmable Josephson Voltage Standards , 2013, IEEE Transactions on Applied Superconductivity.

[51]  Alain Rüfenacht,et al.  Differential Sampling Measurement of a 7 V RMS Sine Wave With a Programmable Josephson Voltage Standard , 2013, IEEE Transactions on Instrumentation and Measurement.

[52]  R. Behr,et al.  Precision Comparison of Sine Waveforms With Pulse-Driven Josephson Arrays , 2013, IEEE Transactions on Applied Superconductivity.

[53]  Ralf Behr,et al.  Development and metrological applications of Josephson arrays at PTB , 2012 .

[54]  Blaise Jeanneret,et al.  High precision comparison between a programmable and a pulse-driven Josephson voltage standard , 2011 .

[55]  Ralf Behr,et al.  Quantum-referenced voltage waveform synthesiser , 2011 .

[56]  S. Benz,et al.  10 Volt Programmable Josephson Voltage Standard Circuits Using NbSi-Barrier Junctions , 2011, IEEE Transactions on Applied Superconductivity.

[57]  S. Benz,et al.  Multitone Waveform Synthesis With a Quantum Voltage Noise Source , 2011, IEEE Transactions on Applied Superconductivity.

[58]  Wan-Seop Kim,et al.  Analog-to-digital conversion for low-frequency waveforms based on the Josephson voltage standard , 2010 .

[59]  Ralf Behr,et al.  The Josephson two-terminal-pair impedance bridge , 2010 .

[60]  Jürgen Schurr,et al.  Realizing the farad from two ac quantum Hall resistances , 2009 .

[61]  Z. Popovic,et al.  Broadband Lumped-Element Integrated $N$-Way Power Dividers for Voltage Standards , 2009, IEEE Transactions on Microwave Theory and Techniques.

[62]  S. P. Benz,et al.  1 V and 10 V SNS Programmable Voltage Standards for 70 GHz , 2009, IEEE Transactions on Applied Superconductivity.

[63]  R. Iuzzolino,et al.  Sub-$\mu{\rm m}$ SNS Josephson Junction Arrays for the Josephson Arbitrary Waveform Synthesizer , 2009, IEEE Transactions on Applied Superconductivity.

[64]  Thomas L. Nelson,et al.  Precision Differential Sampling Measurements of Low-Frequency Synthesized Sine Waves With an AC Programmable Josephson Voltage Standard , 2009, IEEE Transactions on Instrumentation and Measurement.

[65]  Piotr S. Filipski,et al.  Correction of systematic errors due to the voltage leads in AC Josephson Voltage Standard , 2008, 2008 Conference on Precision Electromagnetic Measurements Digest.

[66]  Samuel P. Benz,et al.  Systematic-Error Signals in the AC Josephson Voltage Standard: Measurement and Reduction , 2008, IEEE Transactions on Instrumentation and Measurement.

[67]  Samuel P. Benz,et al.  AC–DC Transfer Standard Measurements and Generalized Compensation With the AC Josephson Voltage Standard , 2008, IEEE Transactions on Instrumentation and Measurement.

[68]  J. Kohlmann,et al.  Improved 10 V SINIS Series Arrays for Applications in AC Voltage Metrology , 2007, IEEE Transactions on Applied Superconductivity.

[69]  J. Melcher,et al.  Direct Comparison of Josephson Waveforms Using an AC Quantum Voltmeter , 2007, IEEE Transactions on Instrumentation and Measurement.

[70]  B. Baek,et al.  Co-Sputtered Amorphous Nb$_{ x}$ Si$_{1 - { x}}$ Barriers for Josephson-Junction Circuits , 2006, IEEE Transactions on Applied Superconductivity.

[71]  S. Benz,et al.  Resonance-free low-pass filters for the AC Josephson voltage standard , 2006, IEEE Transactions on Applied Superconductivity.

[72]  A. Shoji,et al.  10V programmable Josephson voltage standard circuits using NbN∕TiNx∕NbN∕TiNx∕NbN double-junction stacks , 2006 .

[73]  D. A. Humphreys,et al.  The simulation and measurement of the response of Josephson junctions to optoelectronically generated short pulses , 2004 .

[74]  John M. Martinis,et al.  Johnson noise thermometry measurements using a quantized voltage noise source for calibration , 2003, IEEE Trans. Instrum. Meas..

[75]  Torsten Funck,et al.  Measuring resistance standards in terms of the quantised Hall resistance with a dual Josephson voltage standard using SINIS Josephson arrays , 2002, Conference Digest Conference on Precision Electromagnetic Measurements.

[76]  Samuel P. Benz,et al.  AC Josephson voltage standard error measurements and analysis , 2002, Conference Digest Conference on Precision Electromagnetic Measurements.

[77]  Samuel P. Benz,et al.  AC coupling technique for Josephson waveform synthesis , 2001 .

[78]  Samuel P. Benz,et al.  Low harmonic distortion in a Josephson arbitrary waveform synthesizer , 2000 .

[79]  Samuel P. Benz,et al.  A pulse‐driven programmable Josephson voltage standard , 1996 .

[80]  C. Hamilton,et al.  Josephson D/A converter with fundamental accuracy , 1995 .

[81]  R. Hanke,et al.  An improved straddling method with triaxial guards for the calibration of inductive voltage dividers at 1592 Hz , 1989 .

[82]  H. Nyquist Thermal Agitation of Electric Charge in Conductors , 1928 .

[83]  J. Johnson Thermal Agitation of Electricity in Conductors , 1927, Nature.

[84]  Wilbur C. Sze,et al.  An injection method for self-calibration of inductive voltage dividers. , 1968 .