Fabrication and formation mechanism of Li2MnO3 ultrathin porous nanobelts by electrospinning

[1]  M. Fang,et al.  Effect of different Bi/Ti molar ratios on visible-light photocatalytic activity of BiOI/TiO2 heterostructured nanofibers , 2016 .

[2]  S. Maensiri,et al.  Electrochemical energy storage performance of electrospun AgOx-MnOx/CNF composites , 2016 .

[3]  Wei Yan,et al.  Synthesis of one-dimensional NiFe2O4 nanostructures: tunable morphology and high-performance anode materials for Li ion batteries , 2016 .

[4]  W. Pan,et al.  Enhanced yellow luminescence of amorphous Ga2O3 nanofibers with tunable crystallinity , 2016 .

[5]  Wei Yan,et al.  Fabrication of a well-aligned TiO2 nanofibrous membrane by modified parallel electrode configuration with enhanced photocatalytic performance , 2016 .

[6]  S. Ramakrishna,et al.  Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment. , 2016, Chemical Society reviews.

[7]  H. Che,et al.  One-dimensional spindle-like BiVO4/TiO2 nanofibers heterojunction nanocomposites with enhanced visible light photocatalytic activity , 2016 .

[8]  Yongyao Xia,et al.  Suppressing the Phase Transition of the Layered Ni-Rich Oxide Cathode during High-Voltage Cycling by Introducing Low-Content Li2MnO3. , 2016, ACS applied materials & interfaces.

[9]  K. Nogita,et al.  Understanding the Origin of Li2MnO3 Activation in Li‐Rich Cathode Materials for Lithium‐Ion Batteries , 2015 .

[10]  Parikshit Sahatiya,et al.  One-step in situ synthesis of single aligned graphene–ZnO nanofiber for UV sensing , 2015 .

[11]  Ji‐Guang Zhang,et al.  Effects of structural defects on the electrochemical activation of Li 2 MnO 3 , 2015 .

[12]  Kongjun Zhu,et al.  Electrochemical properties of Li2MnO3 nanocrystals synthesized using a hydrothermal method , 2015 .

[13]  M. Wohlfahrt‐Mehrens,et al.  Improving the cycling stability of Li2MnO3 by surface treatment , 2015 .

[14]  Yaomin Li,et al.  Spinel LiMn2O4 nanoparticles dispersed on nitrogen-doped reduced graphene oxide nanosheets as an efficient electrocatalyst for aluminium-air battery , 2015 .

[15]  C. Julien,et al.  Synthesis, characterization and electrochemical performance of Al-substituted Li 2 MnO 3 , 2015 .

[16]  Faxing Wang,et al.  A nanocomposite of Li2MnO3 coated by FePO4 as cathode material for lithium ion batteries , 2015 .

[17]  M. Tabuchi,et al.  Mn source effects on electrochemical properties of Fe -and Ni-substituted Li2MnO3 positive electrode material , 2015 .

[18]  Jie Xiao,et al.  Probing the Degradation Mechanism of Li2MnO3 Cathode for Li-Ion Batteries , 2015 .

[19]  S. Ramakrishna,et al.  Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications. , 2015, ACS nano.

[20]  P. Ngoepe,et al.  Origin of electrochemical activity in nano-Li2MnO3; stabilization via a 'point defect scaffold'. , 2015, Nanoscale.

[21]  D. Ye,et al.  Li2MnO3 based Li-rich cathode materials: towards a better tomorrow of high energy lithium ion batteries , 2014 .

[22]  Yunlong Zhao,et al.  Novel Li₂MnO₃ nanowire anode with internal Li-enrichment for use in a Li-ion battery. , 2014, Nanoscale.

[23]  T. Akita,et al.  Electron microscopy analysis of Ti-substituted Li2MnO3 positive electrode before and after carbothermal reduction , 2014 .

[24]  K. Chung,et al.  Mechanochemical Synthesis of Li2MnO3 Shell/LiMO2 (M = Ni, Co, Mn) Core-Structured Nanocomposites for Lithium-Ion Batteries , 2014, Scientific Reports.

[25]  Wei Yan,et al.  Fabrication and characterization of CoTiO3 nanofibers by sol–gel assisted electrospinning , 2014 .

[26]  Mingdeng Wei,et al.  Facile synthesis of Li2MnO3 nanowires for lithium-ion battery cathodes , 2014 .

[27]  Shaohua Shen,et al.  One-dimensional CdS/ZnO core/shell nanofibers via single-spinneret electrospinning: tunable morphology and efficient photocatalytic hydrogen production. , 2013, Nanoscale.

[28]  D. Aurbach,et al.  Study of the nanosized Li2MnO3: Electrochemical behavior, structure, magnetic properties, and vibrational modes , 2013 .

[29]  Q. Xue,et al.  Magnetic and electrochemical properties of CuFe2O4 hollow fibers fabricated by simple electrospinning and direct annealing , 2012 .

[30]  J. Gim,et al.  Fully activated Li2MnO3 nanoparticles by oxidation reaction , 2012 .

[31]  Yunhui Huang,et al.  Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries , 2012 .

[32]  George K Stylios,et al.  A new mechanism for the electrospinning of nanoyarns , 2012 .

[33]  H. Duan,et al.  Temperature effect on electrospinning of nanobelts: the case of hafnium oxide , 2011, Nanotechnology.

[34]  Xizhi Fan,et al.  Formation mechanism of Fe2O3 hollow fibers by direct annealing of the electrospun composite fibers and their magnetic, electrochemical properties , 2011 .

[35]  M. Hochella,et al.  Use of XPS to identify the oxidation state of Mn in solid surfaces of filtration media oxide samples from drinking water treatment plants. , 2010, Environmental science & technology.

[36]  C. Delmas,et al.  Reinvestigation of Li2MnO3 Structure: Electron Diffraction and High Resolution TEM , 2009 .

[37]  X. Jiao,et al.  Facile preparation and electrochemical properties of cubic-phase Li4Mn5O12 nanowires. , 2007, Chemical communications.

[38]  D. Banerjee,et al.  Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation , 1998 .

[39]  Q. Wei,et al.  Formation mechanism of porous hollow SnO2 nanofibers prepared by one-step electrospinning , 2012 .