Influence of magnetic field on plasma parameters and thin film deposition along axial and radial distances in DC magnetron

Magnetic field (B) distribution of the magnetron was measured and discussed its effect on plasma parameters and deposition rate. Plasma parameters such as electron temperature (Te), electron number density (ne) were estimated using electron flux (EF) and electron energy distribution function (EEDF) methods as function of axial, radial distances from the cathode. Te and ne decreased with increasing of axial, radial distances from the cathode. Dr was obtained for the same positions where the above plasma parameters were measured, and found that similar profile with Te and ne. Magnetron configuration was simulated using COMSOL Multiphysics software and compared with the experimentally measured profile. Further, density distribution was simulated using measured B through particle in cell - Monte Carlo collision and found simulation results are well supported to the experimental results.

[1]  J. Bradley,et al.  Langmuir probe measurement of electron temperature in a Druyvesteyn electron plasma , 2016 .

[2]  L. Vela,et al.  A plasma source driven predator-prey like mechanism as a potential cause of spiraling intermittencies in linear plasma devices , 2014 .

[3]  A. Iyengar,et al.  Investigation of complexity dynamics of inverse and normal homoclinic bifurcation in a glow discharge plasma , 2014 .

[4]  S. M. Borah Direct Current Magnetron Glow Discharge Plasma Characteristics Study for Controlled Deposition of Titanium Nitride Thin Film , 2013 .

[5]  R. Sanjinés,et al.  Electrical and optical properties of Ta-Si-N thin films deposited by reactive magnetron sputtering , 2012 .

[6]  N. Poluektov,et al.  Probe and Emission Spectrometry Diagnostics in Hollow Cathode Magnetron , 2012 .

[7]  V. Godyak,et al.  Electron energy distribution function and plasma parameters across magnetic filters , 2012 .

[8]  M. A. Hassouba,et al.  Investigations of Ion Confinement by Direct Current Coaxial Glow Discharge , 2012 .

[9]  Pichet Limsuwan,et al.  Single Langmuir Probe Measurements in an Unbalanced Magnetron Sputtering System , 2012 .

[10]  I. Kolev,et al.  Deposition rate characteristics for steady state high power impulse magnetron sputtering (HIPIMS) discharges generated with a modulated pulsed power (MPP) generator , 2011 .

[11]  H. Bailung,et al.  Effect of E × B electron drift and plasma discharge in dc magnetron sputtering plasma , 2011 .

[12]  N. Qamhieh,et al.  Fabrication of size-selected Pd nanoclusters using a magnetron plasma sputtering source , 2010 .

[13]  S. Dew,et al.  Effect of magnetic field strength on deposition rate and energy flux in a dc magnetron sputtering system , 2009 .

[14]  S. Saloum,et al.  Effect of electron energy probability function on plasma CVD/modification in a 13.56 MHz hollow cathode discharge , 2009 .

[15]  H. Bailung,et al.  Study on the influence of nitrogen on titanium nitride in a dc post magnetron sputtering plasma system , 2008 .

[16]  H. Bailung,et al.  Investigation of the E × B rotation of electrons and related plasma characteristics in a radio frequency magnetron sputtering discharge , 2007 .

[17]  R. Merlino Understanding Langmuir probe current-voltage characteristics , 2007 .

[18]  D. Homfray,et al.  Electron Energy Distribution Function Measurements by Langmuir Probe in ITER like Negative Ion Sources , 2007 .

[19]  M. Dimitrova,et al.  Second derivative Langmuir probe measurements in Faraday dark space in Argon d.c. gas discharge at intermediate pressures , 2006 .

[20]  M. Jayaraj,et al.  Characterization of radio frequency plasma using Langmuir probe and optical emission spectroscopy , 2006 .

[21]  S. Wu Dependence of plasma characteristics on dc magnetron sputter parameters , 2005 .

[22]  P. Kudrna,et al.  2‐D Experimental Study of the Plasma Parameter Variations of the Magnetically Sustained DC Discharge in Cylindrical Symmetry in Argon , 2004 .

[23]  J. In,et al.  Effects of a sheath boundary on electron energy distribution in Ar/He dc magnetron discharges , 2004 .

[24]  K. Okimura,et al.  Ti ion density in inductively coupled plasma enhanced dc magnetron sputtering , 2004 .

[25]  W. Lee,et al.  Multi-scale simulation of plasma generation and film deposition in a circular type DC magnetron sputtering system , 2005 .

[26]  L. Poucques,et al.  Fundamental aspects in non-reactive and reactive magnetron discharges , 2003 .

[27]  P. Chu,et al.  Influence of magnetic field on magnetized hydrogen plasmas in plasma immersion ion implantation , 2003 .

[28]  S. Dew,et al.  Spatial survey of a magnetron plasma sputtering system using a Langmuir probe , 2002 .

[29]  S. Choi,et al.  Effect of film density on electrical properties of indium tin oxide films deposited by dc magnetron reactive sputtering , 2001 .

[30]  Witold Posadowski,et al.  Plasma parameters of very high target power density magnetron sputtering , 2001 .

[31]  V. Rigato,et al.  Effects of plasma non-homogeneity on the physical properties of sputtered thin films , 2001 .

[32]  J. Pelletier,et al.  Determination of the EEDF by Langmuir probe diagnostics in a plasma excited at ECR above a multipolar magnetic field , 2001 .

[33]  Gun-Ho Kim,et al.  Electrostatic probe diagnostics of a planar-type radio-frequency inductively coupled oxygen plasma , 2001 .

[34]  E. Broitman,et al.  Influence of plasma parameters on the growth and properties of magnetron sputtered CNx thin films , 2000 .

[35]  P. Kelly,et al.  Magnetron sputtering: a review of recent developments and applications , 2000 .

[36]  E. Passoth,et al.  Radial behaviour of the electron energy distribution function in the cylindrical magnetron discharge in argon , 1999 .

[37]  S. Kawamoto,et al.  Particle-in-cell plus direct simulation Monte Carlo (PIC-DSMC) approach for self-consistent plasma-gas simulations , 1999 .

[38]  J. Goree,et al.  Electron velocity distribution functions in a sputtering magnetron discharge for the E×B direction , 1998 .

[39]  J. Musil,et al.  Recent advances in magnetron sputtering technology , 1998 .

[40]  J. Hopwood,et al.  Axially-resolved study of highly ionized physical vapor deposition , 1997 .

[41]  Y. Setsuhara,et al.  Electron cyclotron resonance plasma enhanced direct current sputtering discharge with magnetic-mirror plasma confinement , 1997 .

[42]  I. Ivanov,et al.  Influence of an external axial magnetic field on the plasma characteristics and deposition conditions during direct current planar magnetron sputtering , 1994 .

[43]  V. Godyak,et al.  Probe diagnostics of non‐Maxwellian plasmas , 1993 .

[44]  Charles K. Birdsall,et al.  Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC , 1991 .

[45]  Matthew Goeckner,et al.  Monte Carlo simulation of ions in a magnetron plasma , 1991 .

[46]  Yoshifumi Ota,et al.  Low resistivity indium–tin oxide transparent conductive films. II. Effect of sputtering voltage on electrical property of films , 1990 .

[47]  H Amemiya Plasmas with negative ions-probe measurements and charge equilibrium , 1990 .

[48]  J. Goree,et al.  Low‐frequency turbulent transport in magnetron plasmas , 1989 .

[49]  W. Tan Langmuir probe measurement of electron temperature in a Druyvesteyn electron plasma , 1973 .