Six novel lignanoids with complex structures from Sigesbeckia glabrescens Makino with their cytotoxic activities.

[1]  Jae-Kwan Hwang,et al.  High hydrostatic pressure extract of Siegesbeckia orientalis inhibits adipogenesis through the activation of the Wnt/β-catenin signaling pathway , 2020, Food Science and Biotechnology.

[2]  Yitao Wang,et al.  Comprehensive comparison on the anti-inflammatory effects of three species of Sigesbeckia plants based on NF-κB and MAPKs signal pathways in vitro. , 2019, Journal of Ethnopharmacology.

[3]  Yitao Wang,et al.  Leocarpinolide B attenuates LPS-induced inflammation on RAW264.7 macrophages by mediating NF-κB and Nrf2 pathways. , 2019, European journal of pharmacology.

[4]  Yuying Zhang,et al.  Germacrane-type sesquiterpenoids with cytotoxic activity from Sigesbeckia orientalis. , 2019, Bioorganic chemistry.

[5]  Jincai Lu,et al.  Acylation of 25-hydroxyprotopanaxatriol with aromatic acids increases cytotoxicity. , 2019, Fitoterapia.

[6]  Guoru Shi,et al.  [Lignans from seed of Hydnocarpus anthelminthica]. , 2019, Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.

[7]  Jun Gu Kim,et al.  Nitric oxide inhibitory constituents from Siegesbeckia pubescens. , 2018, Bioorganic chemistry.

[8]  T. Yi,et al.  Comparison of the chemical profiles and inflammatory mediator-inhibitory effects of three Siegesbeckia herbs used as Herba Siegesbeckiae (Xixiancao) , 2018, BMC Complementary and Alternative Medicine.

[9]  Chi‐Chang Chang,et al.  Siegesbeckia orientalis Extract Inhibits TGFβ1-Induced Migration and Invasion of Endometrial Cancer Cells , 2016, Molecules.

[10]  F. Jia,et al.  Radical Scavenging Constituents from Leaf of Humulus scandens , 2016 .

[11]  De-Quan Yu,et al.  Acylated flavonol glycosides and δ-truxinate derivative from the aerial parts of Lysimachia clethroides , 2015 .

[12]  I. Shin,et al.  Siegesbeckia glabrescens attenuates allergic airway inflammation in LPS-stimulated RAW 264.7 cells and OVA induced asthma murine model. , 2014, International immunopharmacology.

[13]  So-Lim Park,et al.  Protein tyrosine phosphatase 1B (PTP1B) inhibitors from Morinda citrifolia (Noni) and their insulin mimetic activity. , 2013, Journal of natural products.

[14]  D. Seo,et al.  The in vitro antitumor activity of Siegesbeckia glabrescens against ovarian cancer through suppression of receptor tyrosine kinase expression and the signaling pathways. , 2013, Oncology reports.

[15]  G. Bringmann,et al.  SpecDis: quantifying the comparison of calculated and experimental electronic circular dichroism spectra. , 2013, Chirality.

[16]  S. Sung,et al.  Epidermal regeneration by ent‐16α, 17‐dihydroxy‐kauran‐19‐oic acid isolated from Siegesbeckia pubescens , 2011, Cell proliferation.

[17]  J. Ruan,et al.  Ent-16β,17-dihydroxy-kauran-19-oic acid, a kaurane diterpene acid from Siegesbeckia pubescens, presents antiplatelet and antithrombotic effects in rats. , 2011, Phytomedicine : international journal of phytotherapy and phytopharmacology.

[18]  Hyun Bong Park,et al.  Lignans from the Roots of Berberis amurensis , 2009 .

[19]  Hongxiang Sun,et al.  Immunosuppressive Activity of the Ethanol Extract of Siegesbeckia orientalis on the Immune Responses to Ovalbumin in Mice , 2006, Chemistry & biodiversity.

[20]  G. Tan,et al.  Bioactive constituents from roots of Bursera tonkinensis. , 2005, Phytochemistry.

[21]  H. Otsuka,et al.  ent-pimarane-type diterpenoids from Siegesbeckia orientalis L. , 2005, Chemical & pharmaceutical bulletin.

[22]  C. Fan,et al.  Novel Sesquiterpenoids from Siegesbeckia orientalis , 2005 .

[23]  C. Fan,et al.  Novel diterpenoids and diterpenoid glycosides from Siegesbeckia orientalis. , 2004, Journal of natural products.

[24]  Y. Hayashi,et al.  Heartwood constituents of Betula maximowicziana , 1997 .

[25]  Yun-bao Ma,et al.  The Constituents of Siegesbeckia orientalis , 1997 .

[26]  R. M. King,et al.  Sesquiterpene lactones and other constituents from Siegesbeckia orientalis and Guizotia scabra , 1991 .