Robust topological Hall effect driven by tunable noncoplanar magnetic state in Mn-Pt-In inverse tetragonal Heusler alloys

Manipulation of magnetic ground states by effective control of competing magnetic interactions has led to the finding of many exotic magnetic states. In this direction, the tetragonal Heusler compounds consisting of multiple magnetic sublattices and crystal symmetry favoring chiral Dzyaloshinskii-Moriya interaction (DMI) provide an ideal base to realize nontrivial magnetic structures. Here we present the observation of a large robust topological Hall effect (THE) in the multisublattice ${\mathrm{Mn}}_{2\ensuremath{-}x}\mathrm{PtIn}$ Heusler magnets. The topological Hall resistivity, which originates from the nonvanishing real space Berry curvature in the presence of nonzero scalar spin chirality, systematically decreases with decreasing the magnitude of the canting angle of the magnetic moments at different sublattices. With help of first-principle calculations, magnetic and neutron diffraction measurements, we establish that the presence of a tunable noncoplanar magnetic structure arising from the competing Heisenberg exchanges and chiral DMI from the ${D}_{2d}$ symmetry structure is responsible for the observed THE. The robustness of the THE with respect to the degree of noncollinearity adds up a new degree of freedom for designing THE based spintronic devices.

[1]  R. Arita,et al.  Electrical manipulation of a topological antiferromagnetic state , 2020, Nature.

[2]  C. Felser,et al.  Detection of antiskyrmions by topological Hall effect in Heusler compounds , 2020, 2006.05190.

[3]  C. Felser,et al.  Observation of Magnetic Antiskyrmions in the Low Magnetization Ferrimagnet Mn2Rh0.95Ir0.05Sn , 2019, Nano letters.

[4]  A. Nayak,et al.  Robust Antiskyrmion Phase in Bulk Tetragonal Mn–Pt(Pd)–Sn Heusler System Probed by Magnetic Entropy Change and AC‐Susceptibility Measurements , 2019, Advanced Functional Materials.

[5]  C. Singh,et al.  Observation of the topological Hall effect and signature of room-temperature antiskyrmions in Mn-Ni-Ga D2d Heusler magnets , 2019, Physical Review B.

[6]  A. Nayak,et al.  Field-induced topological Hall effect in the noncoplanar triangular antiferromagnetic geometry of Mn3Sn , 2019, Physical Review B.

[7]  M. Raju,et al.  The evolution of skyrmions in Ir/Fe/Co/Pt multilayers and their topological Hall signature , 2019, Nature Communications.

[8]  Jia-ling Wang,et al.  Spin chirality fluctuation in two-dimensional ferromagnets with perpendicular magnetic anisotropy , 2018, Nature Materials.

[9]  Y. Tokura,et al.  Spontaneous Hall effect in the Weyl semimetal candidate of all-in all-out pyrochlore iridate , 2018, Nature Communications.

[10]  Y. Tokura,et al.  Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet , 2018, Science.

[11]  N. Nagaosa,et al.  Spin chirality induced skew scattering and anomalous Hall effect in chiral magnets , 2018, Science Advances.

[12]  Stefan Blügel,et al.  Control of morphology and formation of highly geometrically confined magnetic skyrmions , 2017, Nature Communications.

[13]  C. Felser,et al.  Magnetic antiskyrmions above room temperature in tetragonal Heusler materials , 2017, Nature.

[14]  K. Khoo,et al.  Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. , 2016, Nature materials.

[15]  D. McComb,et al.  Robust Zero-Field Skyrmion Formation in FeGe Epitaxial Thin Films. , 2016, Physical review letters.

[16]  C. Felser,et al.  Design of compensated ferrimagnetic Heusler alloys for giant tunable exchange bias. , 2015, Nature materials.

[17]  C. Felser,et al.  Large noncollinearity and spin reorientation in the novel Mn2RhSn Heusler magnet. , 2014, Physical review letters.

[18]  H. Löhneysen,et al.  Large topological Hall effect in the non-collinear phase of an antiferromagnet , 2014, Nature Communications.

[19]  Y. Tokura,et al.  Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.

[20]  A. Fert,et al.  Skyrmions on the track. , 2013, Nature nanotechnology.

[21]  C. Chien,et al.  Extended Skyrmion phase in epitaxial FeGe(111) thin films. , 2012, Physical review letters.

[22]  C. Pfleiderer,et al.  Magnetic phase diagram of MnSi inferred from magnetization and ac susceptibility , 2012, 1206.5774.

[23]  Y. Tokura,et al.  Observation of Skyrmions in a Multiferroic Material , 2012, Science.

[24]  C. Felser,et al.  Mn2PtIn: A tetragonal Heusler compound with exchange bias behavior , 2012 .

[25]  Y. Tokura,et al.  Skyrmion flow near room temperature in an ultralow current density , 2012, Nature Communications.

[26]  M. Schmidt,et al.  Precursor phenomena at the magnetic ordering of the cubic helimagnet FeGe. , 2011, Physical review letters.

[27]  S. Heinze,et al.  Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions , 2011 .

[28]  Claudia Felser,et al.  Simple rules for the understanding of Heusler compounds , 2011 .

[29]  Y. Tokura,et al.  Large topological Hall effect in a short-period helimagnet MnGe. , 2011, Physical review letters.

[30]  P. Böni,et al.  Spin Transfer Torques in MnSi at Ultralow Current Densities , 2010, Science.

[31]  S. Fujimoto,et al.  Unconventional anomalous hall effect in the metallic triangular-lattice magnet PdCrO₂. , 2010, Physical review letters.

[32]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[33]  J. Sinova,et al.  Anomalous hall effect , 2009, 0904.4154.

[34]  Xiaofeng Jin,et al.  Proper scaling of the anomalous Hall effect. , 2009, Physical review letters.

[35]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[36]  P. Böni,et al.  Topological Hall effect in the A phase of MnSi. , 2009, Physical review letters.

[37]  Y. Maeno,et al.  Unconventional anomalous Hall effect enhanced by a noncoplanar spin texture in the frustrated Kondo lattice Pr2Ir2O7. , 2007, Physical review letters.

[38]  N. Ong,et al.  Hidden constant in the anomalous Hall effect of high-purity magnet MnSi , 2006, cond-mat/0610788.

[39]  U. Rößler,et al.  Magnetic structures and reorientation transitions in noncentrosymmetric uniaxial antiferromagnets , 2002, cond-mat/0206291.

[40]  N. Nagaosa,et al.  Spin Chirality, Berry Phase, and Anomalous Hall Effect in a Frustrated Ferromagnet , 2001, Science.

[41]  A. S Wills,et al.  A new protocol for the determination of magnetic structures using simulated annealing and representational analysis (SARAh) , 2000 .

[42]  H. Sato,et al.  Magnetic anisotropy, first-order-like metamagnetic transitions, and large negative magnetoresistance in single-crystal Gd 2 PdSi 3 , 1999, cond-mat/9908128.

[43]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[44]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[45]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[46]  G. Kádár,et al.  Magnetic Structures and Phase Transformations in Mn‐Based CuAu‐I Type Alloys , 1968 .