A Probabilistic Strategy for Setting Temporal Constraints in Scientific Workflows

In scientific workflow systems, temporal consistency is critical to ensure the timely completion of workflow instances. To monitor and guarantee the correctness of temporal consistency, temporal constraints are often set and then verified. However, most current work adopts user specified temporal constraints without considering system performance, and hence may result in frequent temporal violations that deteriorate the overall workflow execution effectiveness. In this paper, with a systematic analysis of such problem, we propose a probabilistic strategy which is capable of setting coarse-grained and fine-grained temporal constraints based on the weighted joint distribution of activity durations. The strategy aims to effectively assign a set of temporal constraints which are well balanced between user requirements and system performance. The effectiveness of our work is demonstrated by an example scientific workflow in our scientific workflow system.

[1]  Jinjun Chen,et al.  Multiple states based temporal consistency for dynamic verification of fixed‐time constraints in Grid workflow systems , 2007, Concurr. Comput. Pract. Exp..

[2]  Averill Law,et al.  Simulation Modeling and Analysis (McGraw-Hill Series in Industrial Engineering and Management) , 2006 .

[3]  Jinjun Chen,et al.  Temporal dependency based checkpoint selection for dynamic verification of fixed-time constraints in grid workflow systems , 2008, 2008 ACM/IEEE 30th International Conference on Software Engineering.

[4]  Rajkumar Buyya,et al.  A Taxonomy of Workflow Management Systems for Grid Computing , 2005, Proceedings of the 38th Annual Hawaii International Conference on System Sciences.

[5]  Hector Garcia-Molina,et al.  Deadline Assignment in a Distributed Soft Real-Time System , 1997, IEEE Trans. Parallel Distributed Syst..

[6]  Jaideep Srivastava,et al.  A probabilistic approach to modeling and estimating the QoS of web-services-based workflows , 2007, Inf. Sci..

[7]  Enrico Vicario,et al.  Correctness verification and performance analysis of real-time systems using stochastic preemptive time Petri nets , 2005, IEEE Transactions on Software Engineering.

[8]  Radu Prodan,et al.  Overhead Analysis of Scientific Workflows in Grid Environments , 2008, IEEE Transactions on Parallel and Distributed Systems.

[9]  Rajkumar Buyya,et al.  A taxonomy of scientific workflow systems for grid computing , 2005, SGMD.

[10]  Jinjun Chen,et al.  A taxonomy of grid workflow verification and validation , 2008, Concurr. Comput. Pract. Exp..

[11]  Johann Eder,et al.  Time Constraints in Workflow Systems , 1999, CAiSE.

[12]  Jinjun Chen,et al.  Adaptive selection of necessary and sufficient checkpoints for dynamic verification of temporal constraints in grid workflow systems , 2007, TAAS.

[13]  Amit P. Sheth,et al.  Modeling Quality of Service for Workflows and Web Service Processes , 2002 .

[14]  van Km Kees Hee,et al.  Analysis of discrete‐time stochastic petri nets , 2000 .

[15]  K. A. Stroud,et al.  Engineering Mathematics , 2020, Nature.

[16]  van der Wmp Wil Aalst,et al.  Workflow control-flow patterns : a revised view , 2006 .

[17]  Kees M. van Hee,et al.  Workflow Management: Models, Methods, and Systems , 2002, Cooperative information systems.

[18]  Hai Zhuge,et al.  A timed workflow process model , 2001, J. Syst. Softw..

[19]  Maria E. Orlowska,et al.  Specification and validation of process constraints for flexible workflows , 2005, Inf. Syst..

[20]  Hai Jin,et al.  Peer-to-Peer Based Grid Workflow Runtime Environment of SwinDeW-G , 2007, Third IEEE International Conference on e-Science and Grid Computing (e-Science 2007).