Admissible states in quantum phase space
暂无分享,去创建一个
[1] Moyal–Nahm equations , 1999, hep-th/9901072.
[2] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[3] Hai-Woong Lee,et al. Theory and application of the quantum phase-space distribution functions , 1995 .
[4] J. Neumann. Die Eindeutigkeit der Schrödingerschen Operatoren , 1931 .
[5] C. Zachos,et al. Features of time-independent Wigner functions , 1997, hep-th/9711183.
[6] A. Pinzul,et al. Absence of the holographic principle in noncommutative Chern-Simons theory , 2001, hep-th/0107179.
[7] M. Scully,et al. The Wigner phase-space description of collision processes , 1983 .
[8] J. E. Moyal. Quantum mechanics as a statistical theory , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.
[9] Nicolaas P. Landsman,et al. Mathematical Topics Between Classical and Quantum Mechanics , 1998 .
[10] Wigner functions with boundaries , 2000, quant-ph/0012140.
[11] F. Bayen,et al. Deformation theory and quantization. I. Deformations of symplectic structures , 1978 .
[12] B. K. Jennings,et al. Wigner's function and other distribution functions in mock phase spaces , 1984 .
[13] Negative Probability and Uncertainty Relations , 2001, hep-th/0105226.
[14] E. Wigner. On the quantum correction for thermodynamic equilibrium , 1932 .
[15] D. Fairlie. The formulation of quantum mechanics in terms of phase space functions , 1964, Mathematical Proceedings of the Cambridge Philosophical Society.
[16] Bohmian trajectories and quantum phase space distributions , 2002, quant-ph/0208156.
[17] Formal solutions of stargenvalue equations , 2001, quant-ph/0110035.
[18] P. Holland. The Quantum Theory of Motion , 1993 .
[19] J. Linnett,et al. Quantum mechanics , 1975, Nature.
[20] C. Zachos,et al. Phase-space quantization of field theory. , 1999, hep-th/9903254.
[21] I. M. Pyshik,et al. Table of integrals, series, and products , 1965 .
[22] V. I. Tatarskii,et al. The Wigner representation of quantum mechanics , 1983 .
[23] P. Carruthers,et al. Quantum collision theory with phase-space distributions , 1983 .
[24] Shin,et al. Floquet analysis of quantum resonance in a driven nonlinear system. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[25] H. Weyl. Quantenmechanik und Gruppentheorie , 1927 .
[26] G. A. Baker,et al. Formulation of Quantum Mechanics Based on the Quasi-Probability Distribution Induced on Phase Space , 1958 .
[27] Causal interpretation and quantum phase space , 2001, quant-ph/0110062.
[28] Half Quantization , 1999, quant-ph/9912071.
[29] L. Cohen. Generalized Phase-Space Distribution Functions , 1966 .
[30] MOYAL BRACKETS IN M-THEORY , 1997, hep-th/9707190.
[31] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[32] Burst process of stretched fiber bundles. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[33] Quantum theory in curved spacetime using the Wigner function , 1997, hep-th/9701182.
[34] T. B. Smith. Semiclassical approximation in the Weyl picture by path summation , 1978 .
[35] Nathan Seiberg,et al. String theory and noncommutative geometry , 1999 .
[36] Kin’ya Takahashi. Distribution Functions in Classical and Quantum Mechanics , 1989 .