Fast C 2 Interpolating Subdivision Surfaces using Iterative Inversion of Stationary Subdivision Rules
暂无分享,去创建一个
[1] Gerald Farin,et al. Curves and surfaces for computer aided geometric design , 1990 .
[2] William H. Press,et al. The Art of Scientific Computing Second Edition , 1998 .
[3] Gilbert Strang,et al. Introduction to applied mathematics , 1988 .
[4] Jörg Peters,et al. Gaussian and Mean Curvature of Subdivision Surfaces , 2000, IMA Conference on the Mathematics of Surfaces.
[5] F. A. Seiler,et al. Numerical Recipes in C: The Art of Scientific Computing , 1989 .
[6] Henning Biermann,et al. Piecewise smooth subdivision surfaces with normal control , 2000, SIGGRAPH.
[7] Insung Ihm,et al. Smoothing polyhedra using implicit algebraic splines , 1992, SIGGRAPH.
[8] Peter Schröder,et al. Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.
[9] Tony DeRose,et al. Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.
[10] N. Dyn,et al. A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.
[11] Sven Havemann,et al. Interactive rendering of Catmull/Clark surfaces with crease edges , 2002, The Visual Computer.
[12] Gene H. Golub,et al. Matrix computations , 1983 .
[13] William H. Press,et al. Numerical recipes in C. The art of scientific computing , 1987 .
[14] IhmInsung,et al. Smoothing polyhedra using implicit algebraic splines , 1992 .
[15] Tony DeRose,et al. Subdivision surfaces in character animation , 1998, SIGGRAPH.
[16] Carlo H. Séquin,et al. Functional optimization for fair surface design , 1992, SIGGRAPH.
[17] Jörg Peters,et al. Local cubic and bicubic C1 surface interpolation with linearly varying boundary normal , 1990, Comput. Aided Geom. Des..
[18] Jörg Peters,et al. Computing curvature bounds for bounded curvature subdivision , 2001, Comput. Aided Geom. Des..
[19] Jos Stam,et al. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.