A Modified Intuitionistic Fuzzy Clustering Algorithm for Medical Image Segmentation

Abstract This paper presents a modified intuitionistic fuzzy clustering (IFCM) algorithm for medical image segmentation. IFCM is a variant of the conventional fuzzy C-means (FCM) based on intuitionistic fuzzy set (IFS) theory. Unlike FCM, IFCM considers both membership and nonmembership values. The existing IFCM method uses Sugeno’s and Yager’s IFS generators to compute nonmembership value. But for certain parameters, IFS constructed using above complement generators does not satisfy the elementary condition of intuitionism. To overcome this problem, this paper adopts a new IFS generator. Further, Hausdorff distance is used as distance metric to calculate the distance between cluster center and pixel. Extensive experimentations are carried out on standard datasets like brain, lungs, liver and breast images. This paper compares the proposed method with other IFS based methods. The proposed algorithm satisfies the elementary condition of intuitionism. Further, this algorithm outperforms other methods with the use of various cluster validity functions.

[1]  Giuseppe D’Aniello,et al.  Enforcing situation awareness with granular computing: a systematic overview and new perspectives , 2016 .

[2]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[3]  Zeshui Xu,et al.  Direct clustering analysis based on intuitionistic fuzzy implication , 2014, Appl. Soft Comput..

[4]  Janusz Kacprzyk,et al.  Intuitionistic Fuzzy Sets in some Medical Applications , 2001, Fuzzy Days.

[5]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[6]  Yiyu Yao,et al.  Granular Computing , 2008 .

[7]  Lining Sun,et al.  A modified fuzzy C-means method for segmenting MR images using non-local information. , 2016, Technology and health care : official journal of the European Society for Engineering and Medicine.

[8]  Kuo-Ping Lin,et al.  A Novel Evolutionary Kernel Intuitionistic Fuzzy $C$ -means Clustering Algorithm , 2014, IEEE Transactions on Fuzzy Systems.

[9]  Han Liu,et al.  Rule-based systems: a granular computing perspective , 2016, Granular Computing.

[10]  Janusz Kacprzyk,et al.  Distances between intuitionistic fuzzy sets , 2000, Fuzzy Sets Syst..

[11]  M. Sugeno,et al.  A MODEL OF LEARNING BASED ON FUZZY INFORMATION , 1977 .

[12]  Robert LIN,et al.  NOTE ON FUZZY SETS , 2014 .

[13]  Georg Peters,et al.  DCC: a framework for dynamic granular clustering , 2016 .

[14]  James C. Bezdek,et al.  On cluster validity for the fuzzy c-means model , 1995, IEEE Trans. Fuzzy Syst..

[15]  Didier Dubois,et al.  Bridging gaps between several forms of granular computing , 2016, Granular Computing.

[16]  Kuo-Chen Hung,et al.  Intuitionistic fuzzy $$c$$c-means clustering algorithm with neighborhood attraction in segmenting medical image , 2015, Soft Comput..

[17]  Pawan Lingras,et al.  Granular meta-clustering based on hierarchical, network, and temporal connections , 2016 .

[18]  Edy Portmann,et al.  Granular computing as a basis of human–data interaction: a cognitive cities use case , 2016, Granular Computing.

[19]  Lutgarde M. C. Buydens,et al.  Geometrically guided fuzzy C-means clustering for multivariate image segmentation , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[20]  Yiyu Yao A triarchic theory of granular computing , 2016 .

[21]  Daoqiang Zhang,et al.  Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[22]  Aly A. Farag,et al.  A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data , 2002, IEEE Transactions on Medical Imaging.

[23]  Chen Qi On clustering approach to intuitionistic fuzzy sets , 2007 .

[24]  Y. Fukuyama,et al.  A new method of choosing the number of clusters for the fuzzy c-mean method , 1989 .

[25]  Zeshui Xu,et al.  A spectral clustering algorithm based on intuitionistic fuzzy information , 2013, Knowl. Based Syst..

[26]  Arindam Chaudhuri,et al.  Intuitionistic Fuzzy Possibilistic C Means Clustering Algorithms , 2015, Adv. Fuzzy Syst..

[27]  Miin-Shen Yang,et al.  Similarity measures of intuitionistic fuzzy sets based on Hausdorff distance , 2004, Pattern Recognit. Lett..

[28]  Tamalika Chaira,et al.  A novel intuitionistic fuzzy approach for tumour/hemorrhage detection in medical images , 2011 .

[29]  Zeshui Xu,et al.  Intuitionistic Fuzzy Clustering Algorithm Based on Boole Matrix and Association Measure , 2013, Int. J. Inf. Technol. Decis. Mak..

[30]  Ivan P. Gavrilyuk,et al.  Lagrange multiplier approach to variational problems and applications , 2010, Math. Comput..

[31]  R. Yager ON THE MEASURE OF FUZZINESS AND NEGATION Part I: Membership in the Unit Interval , 1979 .

[32]  Fan Min,et al.  Semi-greedy heuristics for feature selection with test cost constraints , 2016 .

[33]  Andrzej Skowron,et al.  Interactive granular computing , 2016 .

[34]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[35]  Mingli Song,et al.  A study of granular computing in the agenda of growth of artificial neural networks , 2016, Granular Computing.

[36]  Lorenzo Livi,et al.  Granular computing, computational intelligence, and the analysis of non-geometric input spaces , 2016 .

[37]  C. Kruse,et al.  Cyber threats to health information systems: A systematic review. , 2016, Technology and health care : official journal of the European Society for Engineering and Medicine.

[38]  Jong-Myon Kim,et al.  A generalized spatial fuzzy c-means algorithm for medical image segmentation , 2009, 2009 IEEE International Conference on Fuzzy Systems.

[39]  Bruno Apolloni,et al.  A neurofuzzy algorithm for learning from complex granules , 2016 .

[40]  Zeshui Xu,et al.  Clustering algorithm for intuitionistic fuzzy sets , 2008, Inf. Sci..

[41]  D. Ciucci Orthopairs and granular computing , 2016 .

[42]  Tzong-Jer Chen,et al.  Fuzzy c-means clustering with spatial information for image segmentation , 2006, Comput. Medical Imaging Graph..

[43]  Zeshui Xu,et al.  A netting clustering analysis method under intuitionistic fuzzy environment , 2011, Appl. Soft Comput..

[44]  Jerry L. Prince,et al.  Adaptive fuzzy segmentation of magnetic resonance images , 1999, IEEE Transactions on Medical Imaging.

[45]  Humberto Bustince,et al.  Intuitionistic fuzzy generators Application to intuitionistic fuzzy complementation , 2000, Fuzzy Sets Syst..

[46]  Shaswati Roy,et al.  Rough-Fuzzy Clustering and Unsupervised Feature Selection for Wavelet Based MR Image Segmentation , 2015, PloS one.

[47]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  P. Ducange,et al.  Multi-objective evolutionary design of granular rule-based classifiers , 2016 .

[49]  Zeshui Xu,et al.  Intuitionistic fuzzy MST clustering algorithms , 2012, Comput. Ind. Eng..

[50]  J. Mendel A comparison of three approaches for estimating (synthesizing) an interval type-2 fuzzy set model of a linguistic term for computing with words , 2016 .

[51]  Tamalika Chaira,et al.  A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images , 2011, Appl. Soft Comput..

[52]  Weina Wang,et al.  On fuzzy cluster validity indices , 2007, Fuzzy Sets Syst..

[53]  Zeshui Xu,et al.  Managing multi-granularity linguistic information in qualitative group decision making: an overview , 2016 .