Greenland ice sheet mass balance: a review

Over the past quarter of a century the Arctic has warmed more than any other region on Earth, causing a profound impact on the Greenland ice sheet (GrIS) and its contribution to the rise in global sea level. The loss of ice can be partitioned into processes related to surface mass balance and to ice discharge, which are forced by internal or external (atmospheric/oceanic/basal) fluctuations. Regardless of the measurement method, observations over the last two decades show an increase in ice loss rate, associated with speeding up of glaciers and enhanced melting. However, both ice discharge and melt-induced mass losses exhibit rapid short-term fluctuations that, when extrapolated into the future, could yield erroneous long-term trends. In this paper we review the GrIS mass loss over more than a century by combining satellite altimetry, airborne altimetry, interferometry, aerial photographs and gravimetry data sets together with modelling studies. We revisit the mass loss of different sectors and show that they manifest quite different sensitivities to atmospheric and oceanic forcing. In addition, we discuss recent progress in constructing coupled ice-ocean-atmosphere models required to project realistic future sea-level changes.

[1]  H. Melling,et al.  Context for the Recent Massive Petermann Glacier Calving Event , 2011, Eos, Transactions American Geophysical Union.

[2]  G. Milne,et al.  The influence of decadal‐ to millennial‐scale ice mass changes on present‐day vertical land motion in Greenland: Implications for the interpretation of GPS observations , 2011 .

[3]  Y. Ahn,et al.  Changes in the marine-terminating glaciers of central east Greenland, 2000–2010 , 2012 .

[4]  Beata Csatho,et al.  Fusion of multi-sensor surface elevation data for improved characterization of rapidly changing outlet glaciers in Greenland , 2014 .

[5]  D. Chambers,et al.  GRACE observes small‐scale mass loss in Greenland , 2008 .

[6]  S. Nowicki,et al.  A System of Conservative Regridding for Ice-Atmosphere Coupling in a General Circulation Model (GCM) , 2014 .

[7]  Jed Brown,et al.  Exact solutions to the thermomechanically coupled shallow-ice approximation: effective tools for verification , 2007 .

[8]  J. Gregory,et al.  Probabilistic parameterisation of the surface mass balance--elevation feedback in regional climate model simulations of the Greenland ice sheet , 2014 .

[9]  Eric Rignot,et al.  Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise , 2011 .

[10]  W. Tad Pfeffer,et al.  Recent contributions of glaciers and ice caps to sea level rise , 2012, Nature.

[11]  J. Wahr,et al.  Acceleration of Greenland ice mass loss in spring 2004 , 2006, Nature.

[12]  Ed Bueler,et al.  An enthalpy formulation for glaciers and ice sheets , 2012, Journal of Glaciology.

[13]  B. Smith,et al.  Marine Ice Sheet Collapse Potentially Under Way for the Thwaites Glacier Basin, West Antarctica , 2014, Science.

[14]  G. Hamilton,et al.  Seasonal variations of outlet glacier terminus position in Greenland , 2013, Journal of Glaciology.

[15]  F. Bryan,et al.  Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE , 1998 .

[16]  M. Funk,et al.  Dynamic damage model of crevasse opening and application to glacier calving , 2005 .

[17]  B. Smith,et al.  Rates of southeast Greenland ice volume loss from combined ICESat and ASTER observations , 2008 .

[18]  L. Yanga A Southern Greenland Ice Sheet Glacier Discharge Reconstruction: 1958-2007 , 2011 .

[19]  A. Vieli,et al.  High sensitivity of tidewater outlet glacier dynamics to shape , 2013 .

[20]  G. Hamilton,et al.  Characteristics of ocean waters reaching Greenland's glaciers , 2012, Annals of Glaciology.

[21]  J. Box,et al.  Greenland marine-terminating glacier area changes: 2000–2010 , 2011, Annals of Glaciology.

[22]  J. Bassis The statistical physics of iceberg calving and the emergence of universal calving laws , 2010, Journal of Glaciology.

[23]  L. Stearns,et al.  Rapid volume loss from two East Greenland outlet glaciers quantified using repeat stereo satellite imagery , 2007 .

[24]  K. Kjær,et al.  Outlet glacier dynamics and bathymetry at Upernavik Isstrøm and Upernavik Isfjord, North-West Greenland , 1969 .

[25]  M. R. van den Broeke,et al.  Partitioning effects from ocean and atmosphere on the calving stability of Kangerdlugssuaq Glacier, East Greenland , 2012, Annals of Glaciology.

[26]  Konrad Steffen,et al.  Surface Melt-Induced Acceleration of Greenland Ice-Sheet Flow , 2002, Science.

[27]  I. Joughin,et al.  High Geothermal Heat Flow, Basal Melt, and the Origin of Rapid Ice Flow in Central Greenland , 2001, Science.

[28]  J. A. Kallen-Brown,et al.  Exact solutions and verification of numerical models for isothermal ice sheets , 2005, Journal of Glaciology.

[29]  Miren Vizcaino,et al.  Ice sheets as interactive components of Earth System Models: progress and challenges , 2014 .

[30]  Jason E. Box,et al.  Greenland Ice Sheet Mass Balance Reconstruction. Part III: Marine Ice Loss and Total Mass Balance (1840–2010) , 2013 .

[31]  Ian Joughin,et al.  Fracture Propagation to the Base of the Greenland Ice Sheet During Supraglacial Lake Drainage , 2008, Science.

[32]  J. Oerlemans,et al.  A data set of worldwide glacier length fluctuations , 2013 .

[33]  J. Paden,et al.  High-resolution bed topography mapping of Russell Glacier, Greenland, inferred from Operation IceBridge data , 2013 .

[34]  Ian Joughin,et al.  Modeling Ice-Sheet Flow , 2012, Science.

[35]  Douglas J. Brinkerhoff,et al.  Data assimilation and prognostic whole ice sheet modelling with the variationally derived, higher order, open source, and fully parallel ice sheet model VarGlaS , 2013 .

[36]  W. Krabill,et al.  Greenland Ice Sheet: High-Elevation Balance and Peripheral Thinning. , 2000, Science.

[37]  Vincent R. Gray Climate Change 2007: The Physical Science Basis Summary for Policymakers , 2007 .

[38]  Myoung-Jong Noh,et al.  An improved mass budget for the Greenland ice sheet , 2013 .

[39]  I. Joughin,et al.  Recurring dynamically induced thinning during 1985 to 2010 on Upernavik Isstrøm, West Greenland , 2013 .

[40]  Eric Rignot,et al.  Mass balance of the Greenland ice sheet from 1958 to 2007 , 2008 .

[41]  R. Thomas The Dynamics of Marine Ice Sheets , 1979 .

[42]  R. Scharroo,et al.  Antarctic elevation change from 1992 to 1996 , 1998, Science.

[43]  Scott B. Luthcke,et al.  Assessing the performance of 20–25 m footprint waveform lidar data collected in ICESat data corridors in Greenland , 2008 .

[44]  Leonid Petrov,et al.  Study of the atmospheric pressure loading signal in very long baseline interferometry observations , 2003, physics/0311096.

[45]  E. Bueler,et al.  Mass-conserving subglacial hydrology in the Parallel Ice Sheet Model , 2014 .

[46]  M. Watkins,et al.  The gravity recovery and climate experiment: Mission overview and early results , 2004 .

[47]  Alun Hubbard,et al.  The response of Petermann Glacier, Greenland, to large calving events, and its future stability in the context of atmospheric and oceanic warming , 2012 .

[48]  Curt H. Davis,et al.  Elevation change of the Antarctic ice sheet, 1995-2000, from ERS-2 satellite radar altimetry , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[49]  J. Christensen,et al.  The HIRHAM Regional Climate Model. Version 5 (beta) , 2007 .

[50]  M. Morlighem,et al.  A damage mechanics assessment of the Larsen B ice shelf prior to collapse: Toward a physically‐based calving law , 2012 .

[51]  Fiammetta Straneo,et al.  Rapid response of Helheim Glacier in Greenland to climate variability over the past century , 2012 .

[52]  Frédérique Rémy,et al.  Antarctic Ice Sheet and Radar Altimetry: A Review , 2009, Remote. Sens..

[53]  Mika Malinen,et al.  Capabilities and performance of Elmer/Ice, a new-generation ice sheet model , 2013 .

[54]  Ian M. Howat,et al.  Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade , 2011, Proceedings of the National Academy of Sciences.

[55]  H. Blatter Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients , 1995 .

[56]  R. Nerem,et al.  Recent Greenland Ice Mass Loss by Drainage System from Satellite Gravity Observations , 2006, Science.

[57]  A. Luckman,et al.  Glacier dynamics at Helheim and Kangerdlugssuaq glaciers, southeast Greenland, since the Little Ice Age , 2014 .

[58]  J. Oerlemans,et al.  Contribution of glacier melt to sea-level rise since AD 1865: a regionally differentiated calculation , 1997 .

[59]  X. Fettweis,et al.  Atmospheric and oceanic climate forcing of the exceptional Greenland ice sheet surface melt in summer 2012 , 2013 .

[60]  Eric Rignot,et al.  Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project II: Greenland , 2013, Journal of Geophysical Research: Earth Surface.

[61]  Chris R. Stokes,et al.  Influence of sea ice decline, atmospheric warming, and glacier width on marine‐terminating outlet glacier behavior in northwest Greenland at seasonal to interannual timescales , 2013 .

[62]  D. Pollard,et al.  Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP , 2012 .

[63]  P. Duval,et al.  Various isotropic and anisotropic ices found in glaciers and polar ice caps and their corresponding rheologies : Ann Geophys V3, N2, March–April 1985, P207–224 , 1985 .

[64]  N. Reeh,et al.  Sea ice and the stability of north and northeast Greenland floating glaciers , 2001, Annals of Glaciology.

[65]  A. Levermann,et al.  Fracture-induced softening for large-scale ice dynamics , 2012 .

[66]  I. Joughin,et al.  Contribution to the glaciology of northern Greenland from satellite radar interferometry , 2001 .

[67]  Nils Olsen,et al.  Heat Flux Anomalies in Antarctica Revealed by Satellite Magnetic Data , 2005, Science.

[68]  G. Flowers,et al.  Modeling channelized and distributed subglacial drainage in two dimensions , 2013 .

[69]  I. Joughin,et al.  Time-evolving mass loss of the Greenland Ice Sheet from satellite altimetry , 2013 .

[70]  B. D. Tapley,et al.  Satellite Gravity Measurements Confirm Accelerated Melting of Greenland Ice Sheet , 2006, Science.

[71]  David M. Holland,et al.  Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters , 2008 .

[72]  W. Peltier GLOBAL GLACIAL ISOSTASY AND THE SURFACE OF THE ICE-AGE EARTH: The ICE-5G (VM2) Model and GRACE , 2004 .

[73]  M. R. van den Broeke,et al.  Partitioning Recent Greenland Mass Loss , 2009, Science.

[74]  Eric Rignot,et al.  Timing and origin of recent regional ice-mass loss in Greenland , 2012 .

[75]  X. Fettweis,et al.  Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers , 2012 .

[76]  T. Scambos,et al.  Rapid Changes in Ice Discharge from Greenland Outlet Glaciers , 2007, Science.

[77]  David J. Harding,et al.  Satellite Laser Altimetry , 2000 .

[78]  Guðfinna Aðalgeirsdóttir,et al.  Hindcasting to measure ice sheet model sensitivity to initial states , 2012 .

[79]  H. Blatter,et al.  Dynamics of Ice Sheets and Glaciers , 2009 .

[80]  P. Huybrechts,et al.  Effect of higher-order stress gradients on the centennial mass evolution of the Greenland ice sheet , 2012 .

[81]  Adrian A. Borsa,et al.  A range correction for ICESat and its potential impact on ice-sheet mass balance studies , 2013 .

[82]  C. Schoof Ice sheet grounding line dynamics: Steady states, stability, and hysteresis , 2007 .

[83]  Ingo Sasgen,et al.  Limits in detecting acceleration of ice sheet mass loss due to climate variability , 2013 .

[84]  Tavi Murray,et al.  Rapid and synchronous ice‐dynamic changes in East Greenland , 2006 .

[85]  W. Lipscomb,et al.  Greenland Surface Mass Balance as Simulated by the Community Earth System Model. Part II: Twenty-First-Century Changes , 2014 .

[86]  Shfaqat Abbas Khan,et al.  Spatial and Temporal Melt Variability at Helheim Glacier, East Greenland, and Its Effect on Ice Dynamics , 2010 .

[87]  X. Fettweis,et al.  The future sea-level rise contribution of Greenland’s glaciers and ice caps , 2013 .

[88]  Robert N. Swift,et al.  Greenland Ice Sheet: Increased coastal thinning , 2004 .

[89]  Xianglin Liu,et al.  Estimation of mass change trends in the Earth’s system on the basis of GRACE satellite data, with application to Greenland , 2012, Journal of Geodesy.

[90]  Eric Rignot,et al.  Deeply incised submarine glacial valleys beneath the Greenland ice sheet , 2014 .

[91]  N. White,et al.  A 20th century acceleration in global sea‐level rise , 2006 .

[92]  Eric Rignot,et al.  Rapid submarine melting of the calving faces of West Greenland glaciers , 2010 .

[93]  Ian M. Howat,et al.  Seasonal to decadal scale variations in the surface velocity of Jakobshavn Isbrae, Greenland: Observation and model-based analysis , 2012 .

[94]  W. Lipscomb,et al.  Greenland Surface Mass Balance as Simulated by the Community Earth System Model. Part I: Model Evaluation and 1850–2005 Results , 2013 .

[95]  B. Csathó,et al.  Maximum late Holocene extent of the western Greenland Ice Sheet during the late 20th century , 2012 .

[96]  D. Vaughan,et al.  Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets , 2009, Nature.

[97]  D. Chambers,et al.  Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output , 2008 .

[98]  Robert N. Swift,et al.  Aircraft laser altimetry measurement of elevation changes of the greenland ice sheet: technique and accuracy assessment , 2002 .

[99]  Reinhard Dietrich,et al.  Volume and mass changes of the Greenland ice sheet inferred from ICESat and GRACE , 2011 .

[100]  K. Kjær,et al.  Terminus-driven retreat of a major southwest Greenland tidewater glacier during the early 19th century: insights from glacier reconstructions and numerical modelling , 2014, Journal of Glaciology.

[101]  Jens Hesselbjerg Christensen,et al.  Role of Model Initialisation for Projections of 21st Century Greenland Ice Sheet Mass Loss , 2014 .

[102]  Jian Wang,et al.  Bedrock displacements in Greenland manifest ice mass variations, climate cycles and climate change , 2012, Proceedings of the National Academy of Sciences.

[103]  Ag Stephens,et al.  Runoff and mass balance of the Greenland ice sheet: 1958–2003 , 2005 .

[104]  Umberto Riccardi,et al.  The measurement of surface gravity , 2013, Reports on progress in physics. Physical Society.

[105]  Ian M. Howat,et al.  Changes in the dynamics of marine terminating outlet glaciers in west Greenland (2000–2009) , 2011 .

[106]  Xavier Fettweis,et al.  Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data , 2012 .

[107]  I. Velicogna Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE , 2009 .

[108]  M. R. van den Broeke,et al.  Evaluating Greenland glacial isostatic adjustment corrections using GRACE, altimetry and surface mass balance data , 2014 .

[109]  D. Vaughan,et al.  Why Is It Hard to Predict the Future of Ice Sheets? , 2007, Science.

[110]  J. Kay,et al.  The Arctic’s rapidly shrinking sea ice cover: a research synthesis , 2012, Climatic Change.

[111]  J. Box,et al.  Surface mass-balance changes of the Greenland ice sheetc since 1866 , 2009, Annals of Glaciology.

[112]  Isabella Velicogna,et al.  Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time‐variable gravity data , 2014 .

[113]  M. Bevis,et al.  Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming , 2014 .

[114]  Michael A. Nielsen,et al.  Reinventing Discovery: The New Era of Networked Science , 2011 .

[115]  Eric Rignot,et al.  A Reconciled Estimate of Ice-Sheet Mass Balance , 2012, Science.

[116]  Konrad Steffen,et al.  Greenland Ice Sheet surface mass balance 1870 to 2010 based on Twentieth Century Reanalysis, and links with global climate forcing , 2011 .

[117]  Michael H. Ritzwoller,et al.  Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica , 2004 .

[118]  I. Joughin,et al.  Seasonal speedup of the Greenland Ice Sheet linked to routing of surface water , 2011 .

[119]  K. Kjær,et al.  An aerial view of 80 years of climate-related glacier fluctuations in southeast Greenland , 2012 .

[120]  M. Cheng,et al.  Variations in the Earth's oblateness during the past 28 years , 2004 .

[121]  A. Abe‐Ouchi,et al.  Present State and Prospects of Ice Sheet and Glacier Modelling , 2011 .

[122]  C. H. Davis,et al.  Satellite radar altimetry , 1992 .

[123]  Fraser Davidson,et al.  Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland , 2010 .

[124]  Ian Joughin,et al.  Changes in ice front position on Greenland's outlet glaciers from 1992 to 2007 , 2008 .

[125]  P. Heimbach,et al.  North Atlantic warming and the retreat of Greenland's outlet glaciers , 2013, Nature.

[126]  T. Murray,et al.  Glacier dynamics over the last quarter of a century at Helheim, Kangerdlugssuaq and 14 other major Greenland outlet glaciers , 2012 .

[127]  Ian Joughin,et al.  Ice-sheet velocity mapping: a combined interferometric and speckle-tracking approach , 2002, Annals of Glaciology.

[128]  Steen Savstrup Kristensen,et al.  Basin-scale partitioning of Greenland ice sheet mass balance components (2007–2011) , 2015 .

[129]  M. Morlighem,et al.  Dependence of century-scale projections of the Greenland ice sheet on its thermal regime , 2013 .

[130]  E. Mosley‐Thompson,et al.  Greenland Ice Sheet Mass Balance Reconstruction. Part I: Net Snow Accumulation (1600–2009) , 2013 .

[131]  M. R. van den Broeke,et al.  Aerial Photographs Reveal Late–20th-Century Dynamic Ice Loss in Northwestern Greenland , 2012, Science.

[132]  Martin O'Leary,et al.  Ocean forcing of the Greenland Ice Sheet: Calving fronts and patterns of retreat identified by automatic satellite monitoring of eastern outlet glaciers , 2011 .

[133]  X. Fettweis,et al.  Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models , 2010 .

[134]  P. Wadhams,et al.  Potential climatic transitions with profound impact on Europe , 2012, Climatic Change.

[135]  W. T. Pfeffer,et al.  A simple mechanism for irreversible tidewater glacier retreat , 2007 .

[136]  C. Schoof Ice-sheet acceleration driven by melt supply variability , 2010, Nature.

[137]  M. Grae Worster,et al.  Dynamics of viscous grounding lines , 2010, Journal of Fluid Mechanics.

[138]  Ian M. Howat,et al.  Multi-decadal retreat of Greenland’s marine-terminating glaciers , 2011, Journal of Glaciology.

[139]  A. Levermann,et al.  Fracture field for large-scale ice dynamics , 2012, Journal of Glaciology.

[140]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[141]  Eric Rignot,et al.  Ice flux divergence anomalies on 79north Glacier, Greenland , 2011 .

[142]  Johannes Weertman,et al.  Stability of the junction of an ice sheet and an ice shelf , 1974 .

[143]  M. Bevis,et al.  Spread of ice mass loss into northwest Greenland observed by GRACE and GPS , 2010 .

[144]  W. Krabill,et al.  Progressive increase in ice loss from Greenland , 2006 .

[145]  Ian M. Howat,et al.  A new bed elevation dataset for Greenland , 2012 .

[146]  Ian Joughin,et al.  Seasonal Speedup Along the Western Flank of the Greenland Ice Sheet , 2008, Science.

[147]  Scott B. Luthcke,et al.  Estimation of ICESat intercampaign elevation biases from comparison of lidar data in East Antarctica , 2013 .

[148]  F. Pattyn,et al.  Future sea-level rise from Greenland’s main outlet glaciers in a warming climate , 2013, Nature.

[149]  R. S. W. van de Wal,et al.  An energy balance model for the Greenland ice sheet , 1994 .

[150]  A. K. Higgins North Greenland Glacier Velocities and Calf Ice Production , 1991 .

[151]  Fabien Gillet-Chaulet,et al.  Simulations of the Greenland ice sheet 100 years into the future with the full Stokes model Elmer/Ice , 2011, Journal of Glaciology.

[152]  I. Howat,et al.  Submarine melt rate estimates for floating termini of Greenland outlet glaciers (2000–2010) , 2013, Journal of Glaciology.

[153]  Philippe Huybrechts,et al.  Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage , 2011, Nature.

[154]  William H. Lipscomb,et al.  Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project) , 2013, Journal of Glaciology.

[155]  F. Landerer,et al.  Accuracy of scaled GRACE terrestrial water storage estimates , 2012 .

[156]  Dorthe Dahl-Jensen,et al.  Basal melt at NorthGRIP modeled from borehole, ice-core and radio-echo sounder observations , 2003, Annals of Glaciology.

[157]  Ed Bueler,et al.  Shallow shelf approximation as a “sliding law” in a thermomechanically coupled ice sheet model , 2008, 0810.3449.

[158]  Michelle F. Thomsen,et al.  Modeling ring current proton precipitation by electromagnetic ion cyclotron waves during the May 14–16, 1997, storm , 2001 .

[159]  Sebastian B. Simonsen,et al.  Mass balance of the Greenland ice sheet (2003–2008) from ICESat data – the impact of interpolation, sampling and firn density , 2011 .

[160]  J. Paden,et al.  Sensitivity Analysis of Pine Island Glacier ice flow using ISSM and DAKOTA , 2012 .

[161]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[162]  I. Joughin,et al.  Constraining ice mass loss from Jakobshavn Isbræ (Greenland) using InSAR-measured crustal uplift , 2012 .

[163]  T. Murray,et al.  Ocean regulation hypothesis for glacier dynamics in southeast Greenland and implications for ice sheet mass changes , 2010 .

[164]  J. Utke,et al.  Inferred basal friction and surface mass balance of the Northeast Greenland Ice Stream using data assimilation of ICESat (Ice Cloud and land Elevation Satellite) surface altimetry and ISSM (Ice Sheet System Model) , 2014 .

[165]  Jack L. Saba,et al.  Greenland ice sheet mass balance: distribution of increased mass loss with climate warming; 2003–07 versus 1992–2002 , 2011, Journal of Glaciology.

[166]  Angelika Humbert,et al.  Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2 , 2014 .

[167]  Jinlun Zhang,et al.  Is the Dipole Anomaly a major driver to record lows in Arctic summer sea ice extent? , 2009 .

[168]  W. Krabill,et al.  Rapid thinning of parts of the southern greenland ice sheet , 1999, Science.

[169]  John F. Burkhart,et al.  High-Resolution Ground-Based GPS Measurements Show Intercampaign Bias in ICESat Elevation Data Near Summit, Greenland , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[170]  J. Wahr,et al.  Improved ice loss estimate of the northwestern Greenland ice sheet , 2013 .

[171]  K. Keay,et al.  Dramatic interannual changes of perennial Arctic sea ice linked to abnormal summer storm activity , 2011 .

[172]  Ian M. Howat,et al.  Rapid retreat and acceleration of Helheim Glacier, east Greenland , 2005 .

[173]  Louise Sandberg Sørensen,et al.  Scatter of mass changes estimates at basin scale for Greenland and Antarctica , 2013 .

[174]  Ian M. Howat,et al.  Mass balance of Greenland's three largest outlet glaciers, 2000–2010 , 2011 .

[175]  R. Dietrich,et al.  Assessing the Current Evolution of the Greenland Ice Sheet by Means of Satellite and Ground-Based Observations , 2014, Surveys in Geophysics.

[176]  Xavier Fettweis,et al.  The role of albedo and accumulation in the 2010 melting record in Greenland , 2011 .

[177]  Dana Floricioiu,et al.  Brief Communication: Further summer speedup of Jakobshavn Isbræ , 2014 .

[178]  J. H. Mercer West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster , 1978, Nature.

[179]  Jack L. Saba,et al.  Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992-2002 , 2005 .

[180]  Guillaume Ramillien,et al.  Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE , 2006 .

[181]  I. Joughin,et al.  Kinematic first-order calving law implies potential for abrupt ice-shelf retreat , 2011 .

[182]  Eric Rignot,et al.  Coupling ice flow models of varying orders of complexity with the Tiling method , 2012, Journal of Glaciology.

[183]  M. R. van den Broeke,et al.  Higher surface mass balance of the Greenland ice sheet revealed by high‐resolution climate modeling , 2009 .

[184]  S. Raper,et al.  Millennial total sea-level commitments projected with the Earth system model of intermediate complexity LOVECLIM , 2012 .

[185]  N. Glasser,et al.  Contrasting Response of South Greenland Glaciers to Recent Climatic Change , 1992 .

[186]  W. Lipscomb,et al.  Future climate warming increases Greenland ice sheet surface mass balance variability , 2014 .

[187]  Kirill S. Khvorostovsky,et al.  Merging and Analysis of Elevation Time Series Over Greenland Ice Sheet From Satellite Radar Altimetry , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[188]  C. Mayer,et al.  Glacier retreat, mass‐balance and thinning: sermilik glacier, south greenland , 2004 .

[189]  X. Fettweis,et al.  Increasing meltwater discharge from the Nuuk region of the Greenland ice sheet and implications for mass balance (1960–2012) , 2014, Journal of Glaciology.

[190]  J. Gregory,et al.  Effect of uncertainty in surface mass balance-elevation feedback on projections of the future sea level contribution of the Greenland ice sheet , 2013 .

[191]  J. Oerlemans,et al.  Coupling of climate models and ice sheet models by surface mass balance gradients: application to the Greenland Ice Sheet , 2012 .

[192]  D. Bromwich,et al.  Greenland Ice Sheet Surface Air Temperature Variability: 1840–2007* , 2009 .

[193]  T. Schenk,et al.  Intermittent thinning of Jakobshavn Isbræ, West Greenland, since the Little Ice Age , 2008, Journal of Glaciology.

[194]  Kirill Khvorostovsky,et al.  Recent Ice-Sheet Growth in the Interior of Greenland , 2005, Science.

[195]  M. Lüthi,et al.  Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland , 2010 .

[196]  P. Råback,et al.  A double continuum hydrological model for glacier applications , 2014 .

[197]  D. Abbot,et al.  Laboratory investigations of iceberg capsize dynamics, energy dissipation and tsunamigenesis , 2012 .

[198]  Alun Hubbard,et al.  Greenland ice sheet motion coupled with daily melting in late summer , 2009 .

[199]  A. Iken The effect of the subglacial water pressure on the sliding velocity of a glacier in an idealized numerical model , 1981 .

[200]  E. Rignot,et al.  Changes in the Velocity Structure of the Greenland Ice Sheet , 2006, Science.

[201]  Ian M. Howat,et al.  Greenland flow variability from ice-sheet-wide velocity mapping , 2010, Journal of Glaciology.

[202]  I. Hewitt Modelling distributed and channelized subglacial drainage: the spacing of channels , 2011, Journal of Glaciology.

[203]  Ian M. Howat,et al.  GPS measurements of crustal uplift near Jakobshavn Isbræ due to glacial ice mass loss , 2010 .

[204]  D. Benn,et al.  Calving processes and the dynamics of calving glaciers , 2007 .

[205]  J. Kusche,et al.  Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model , 2009 .

[206]  Gaël Durand,et al.  Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model , 2012 .

[207]  Ian M. Howat,et al.  Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. , 2009 .

[208]  S. Marshall,et al.  Paleofluvial Mega-Canyon Beneath the Central Greenland Ice Sheet , 2013, Science.

[209]  Ian M. Howat,et al.  Submarine melting of the 1985 Jakobshavn Isbræ floating tongue and the triggering of the current retreat , 2009 .

[210]  J. Box Greenland Ice Sheet Mass Balance Reconstruction. Part II: Surface Mass Balance (1840–2010)* , 2013 .

[211]  M. Fahnestock,et al.  Volume change of Jakobshavn Isbræ, West Greenland: 1985–1997–2007 , 2010, Journal of Glaciology.

[212]  I. Joughin,et al.  21st-Century Evolution of Greenland Outlet Glacier Velocities , 2011, Science.

[213]  Martin Truffer,et al.  A unifying framework for iceberg-calving models , 2010, Journal of Glaciology.

[214]  Peter Jansson,et al.  Detailed spatially distributed geothermal heat-flow data for modeling of basal temperatures and meltwater production beneath the Fennoscandian ice sheet , 2005, Annals of Glaciology.

[215]  X. Fettweis,et al.  Impact of spatial resolution on the modelling of the Greenland ice sheet surface mass balance between 1990–2010, using the regional climate model MAR , 2012 .

[216]  J. Harper,et al.  Understanding Greenland ice sheet hydrology using an integrated multi-scale approach , 2013 .

[217]  Isabella Velicogna,et al.  Time‐variable gravity observations of ice sheet mass balance: Precision and limitations of the GRACE satellite data , 2013 .

[218]  D. Chambers,et al.  GRACE, time-varying gravity, Earth system dynamics and climate change , 2014, Reports on progress in physics. Physical Society.

[219]  Matt A. King,et al.  Short‐term variability in Greenland Ice Sheet motion forced by time‐varying meltwater drainage: Implications for the relationship between subglacial drainage system behavior and ice velocity , 2012 .

[220]  Eric Rignot,et al.  Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM) , 2012 .

[221]  Ian Joughin,et al.  Large fluctuations in speed on Greenland's Jakobshavn Isbræ glacier , 2004, Nature.

[222]  E. Bueler An exact solution for a steady, flowline marine ice sheet , 2014, Journal of Glaciology.

[223]  Lili Ju,et al.  Manufactured solutions and the verification of three-dimensional Stokes ice-sheet models , 2013 .

[224]  Ian M. Howat,et al.  Continued evolution of Jakobshavn Isbrae following its rapid speedup , 2008 .

[225]  R. Lindenbergh,et al.  Estimating the rates of mass change, ice volume change and snow volume change in Greenland from ICESat and GRACE data , 2009 .

[226]  Niels Reeh,et al.  A nonsteady‐state firn‐densification model for the percolation zone of a glacier , 2008 .