Illustrative Visualization

The tutorial presents state-of-the-art visualization techniques inspired by traditional technical and medical illustrations. Such techniques exploit the perception of the human visual system and provide effective visual abstractions to make the visualization clearly understandable. Visual emphasis and abstraction has been used for expressive presentation from prehistoric paintings to nowadays scientific and medical illustrations. Many of the expressive techniques used in art are adopted in computer graphics, and are denoted as illustrative or non-photorealistic rendering. Different stroke techniques, or brush properties express a particular level of abstraction. Feature emphasis or feature suppression is achieved by combining different abstraction levels in illustrative rendering. Challenges in visualization research are very large data visualization as well as multi-dimensional data visualization. To effectively convey the most important visual information there is a significant need for visual abstraction. For less relevant information the dedicated image space is reduced to enhance more prominent features. The discussed techniques in the context of scientific visualization are based on iso-surfaces and volume rendering. Apart from visual abstraction, i.e., illustrative representation, the visibility of prominent features can be achieved by illustrative visualization techniques such as cut-away views or ghosted views. The structures that occlude the most prominent information are suppressed in order to clearly see more interesting parts. Another smart way to provide information on the data is using exploded views or other types of deformation. Illustrative visualization is demonstrated via application-specific tasks in medical visualization. An important aspect as compared to traditional medical illustrations is the interactivity and real-time manipulation of the acquired patient data. This can be very useful in anatomy education. Another application area is surgical planning which is demonstrated with two case studies: neck dissection and liver surgery planning.

[1]  Heinz-Otto Peitgen,et al.  Concepts for Rapid Application Prototyping in Medical Image Analysis and Visualization , 2003, SimVis.

[2]  Kwan-Liu Ma,et al.  Hardware-accelerated parallel non-photorealistic volume rendering , 2002, NPAR '02.

[3]  Dirk Bartz,et al.  Illustrative Rendering of Segmented Anatomical Data , 2005, SimVis.

[4]  Steven K. Feiner,et al.  Cutaways and ghosting: satisfying visibility constraints in dynamic 3D illustrations , 1992, The Visual Computer.

[5]  Adam Finkelstein,et al.  Suggestive contours for conveying shape , 2003, ACM Trans. Graph..

[6]  Andreas Pommert,et al.  Creating a high-resolution spatial/symbolic model of the inner organs based on the Visible Human , 2001, Medical Image Anal..

[7]  Heinz-Otto Peitgen,et al.  Efficient Semiautomatic Segmentation of 3D Objects in Medical Images , 2000, MICCAI.

[8]  Victor Ostromoukhov,et al.  Hatching by example: a statistical approach , 2002, NPAR '02.

[9]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[10]  David S. Ebert,et al.  Volume Illustration: Nonphotorealistic Rendering of Volume Models , 2001, IEEE Trans. Vis. Comput. Graph..

[11]  Ross T. Whitaker,et al.  Curvature-based transfer functions for direct volume rendering: methods and applications , 2003, IEEE Visualization, 2003. VIS 2003..

[12]  David H. Laidlaw,et al.  Thoughts on User Studies: Why, How and When , 1993 .

[13]  Bernhard Preim,et al.  Bildanalyse für die präoperative Planung von Neck Dissections , 2005, Bildverarbeitung für die Medizin.

[14]  Josie Wernecke,et al.  The inventor mentor - programming object-oriented 3D graphics with Open Inventor, release 2 , 1993 .

[15]  Adam Finkelstein,et al.  Real-time hatching , 2001, SIGGRAPH.

[16]  Xiaoru Yuan,et al.  Illustrating surfaces in volume , 2004, VISSYM'04.

[17]  Chris Christou,et al.  Shape Constancy in Pictorial Relief , 1996, Object Representation in Computer Vision.

[18]  Ron Kikinis,et al.  A 3-D System for Planning and Simulating Minimally-Invasive Distraction Osteogenesis of the Facial Skeleton , 2000, MICCAI.

[19]  Bernhard Preim,et al.  Visualization and interaction techniques for the exploration of vascular structures , 2001, Proceedings Visualization, 2001. VIS '01..

[20]  M. Riemer,et al.  A new representation of knowledge concerning human anatomy and function , 1995, Nature Medicine.

[21]  Ganesh S. Oak Information Visualization Introduction , 2022 .

[22]  Guido Gerig,et al.  Symbolic Description of 3-D Structures Applied to Cerebral Vessel Tree Obtained from MR Angiography Volume Data , 1993, IPMI.

[23]  Bernhard Preim,et al.  Integration of measurement tools in medical 3d visualizations , 2002, IEEE Visualization, 2002. VIS 2002..

[24]  Victoria Interrante,et al.  Enhancing transparent skin surfaces with ridge and valley lines , 1995, Proceedings Visualization '95.

[25]  Victoria Interrante,et al.  Illustrating surface shape in volume data via principal direction-driven 3D line integral convolution , 1997, SIGGRAPH.

[26]  Thomas Ertl,et al.  Interactive Cutaway Illustrations , 2003, Comput. Graph. Forum.

[27]  Bruce Gooch,et al.  Non-photorealistic rendering , 2001 .

[28]  Thomas Strothotte,et al.  Frame-Coherent Stippling , 2002, Eurographics.

[29]  Heinz-Otto Peitgen,et al.  IWT-interactive watershed transform: a hierarchical method for efficient interactive and automated segmentation of multidimensional gray-scale images , 2003, SPIE Medical Imaging.

[30]  J J Koenderink,et al.  What Does the Occluding Contour Tell Us about Solid Shape? , 1984, Perception.

[31]  Heinz Handels,et al.  Atlas-based segmentation of bone structures to support the virtual planning of hip operations , 2001, Int. J. Medical Informatics.

[32]  Adam Finkelstein,et al.  Interactive rendering of suggestive contours with temporal coherence , 2004, NPAR '04.

[33]  Bernhard Preim,et al.  Analysis of Vasculature for Liver Surgery Planning , 2002, IEEE Trans. Medical Imaging.

[34]  Bernhard Preim,et al.  Interactive Visualization for Neck-Dissection Planning , 2005, EuroVis.

[35]  Bernhard Preim,et al.  Combining Silhouettes, Surface, and Volume Rendering for Surgery Education and Planning , 2005, EuroVis.

[36]  Bernhard Preim,et al.  NPR, Focussing and Emphasis in Medical Visualizations , 2005, SimVis.

[37]  Bernhard Preim,et al.  Visualization of vasculature with convolution surfaces: method, validation and evaluation , 2005, IEEE Transactions on Medical Imaging.

[38]  Ramesh Raskar,et al.  Image precision silhouette edges , 1999, SI3D.

[39]  Adrian Secord,et al.  Weighted Voronoi stippling , 2002, NPAR '02.

[40]  Marc Levoy,et al.  Volume rendering in radiation treatment planning , 1990, [1990] Proceedings of the First Conference on Visualization in Biomedical Computing.

[41]  V. Spitzer,et al.  The visible human male: a technical report. , 1996, Journal of the American Medical Informatics Association : JAMIA.

[42]  Yutaka Ohtake,et al.  Mesh smoothing via mean and median filtering applied to face normals , 2002, Geometric Modeling and Processing. Theory and Applications. GMP 2002. Proceedings.

[43]  R. Kirk,et al.  VOXEL‐MAN 3D Navigator. Inner Organs ; Regional, Systemic and Radiological Anatomy. By K. H. Heinz, B. Pflesser, A. Pommert and others. (CD‐Rom ; ISBN 3 540 14759 4.) Berlin : Springer. 2000 , 2001 .

[44]  W. Hollinshead,et al.  A TEXTBOOK OF ANATOMY , 1925 .

[45]  Isabel Navazo,et al.  An interactive cerebral blood vessel exploration system , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[46]  Jens Schneider,et al.  Interactive Volume Illustration , 2002, VMV.

[47]  Markus Hadwiger,et al.  High-quality two-level volume rendering of segmented data sets on consumer graphics hardware , 2003, IEEE Visualization, 2003. VIS 2003..

[48]  Gabriel Taubin,et al.  Curve and surface smoothing without shrinkage , 1995, Proceedings of IEEE International Conference on Computer Vision.

[49]  Ross T. Whitaker,et al.  Geometric surface smoothing via anisotropic diffusion of normals , 2002, IEEE Visualization, 2002. VIS 2002..

[50]  T. Todd Elvins,et al.  A survey of algorithms for volume visualization , 1992, COMG.

[51]  Tobias Isenberg,et al.  Stylizing Silhouettes at Interactive Rates: 
 From Silhouette Edges to Silhouette Strokes , 2002, Comput. Graph. Forum.

[52]  Tobias Isenberg,et al.  A Developer's Guide to Silhouette Algorithms for Polygonal Models , 2003, IEEE Computer Graphics and Applications.

[53]  Gershon Elber,et al.  Adaptive extraction and visualization of silhouette curves from volumetric datasets , 2004, The Visual Computer.

[54]  David H. Eberly,et al.  Geometric Tools for Computer Graphics , 2002 .

[55]  Thomas Rist,et al.  Incorporating Graphics Design and Realization into the Multimodal Presentation System WIP , 1992, Advanced Visual Interfaces.

[56]  W. Eric L. Grimson,et al.  An Integrated Visualization System for Surgical Planning and Guidance Using Image Fusion and Interventional Imaging , 1999, MICCAI.

[57]  Alex T. Pang,et al.  Approaches to uncertainty visualization , 1996, The Visual Computer.

[58]  Bernhard Preim,et al.  Visualisierungs- und Interaktionstechniken für die Planung lokaler Therapien , 2003, SimVis.

[59]  Stefan Schlechtweg,et al.  Non-photorealistic computer graphics: modeling, rendering, and animation , 2002 .

[60]  Oliver Deussen,et al.  Floating Points: A Method for Computing Stipple Drawings , 2000, Comput. Graph. Forum.

[61]  Takafumi Saito,et al.  Comprehensible rendering of 3-D shapes , 1990, SIGGRAPH.

[62]  Mariette Yvinec,et al.  Algorithmic geometry , 1998 .

[63]  U. Kühnapfel,et al.  Animation and Simulation Techniques for VR-Training Systems in Endoscopic Surgery , 2000, Computer Animation and Simulation.

[64]  David S. Ebert,et al.  Illustrative Interactive Stipple Rendering , 2003, IEEE Trans. Vis. Comput. Graph..

[65]  Eduard Gröller,et al.  Fast Visualization of Object Contours by Non‐Photorealistic Volume Rendering , 2001, Comput. Graph. Forum.

[66]  U. Ku,et al.  Endoscopic surgery training using virtual reality and deformable tissue simulation , 2000 .

[67]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[68]  Peter-Pike J. Sloan,et al.  Interactive technical illustration , 1999, SI3D.

[69]  H. Reeves,et al.  The Guild handbook of scientific illustration , 1991 .

[70]  Ivan Viola,et al.  Importance-driven volume rendering , 2004, IEEE Visualization 2004.

[71]  Hai Lin,et al.  Nonphotorealistic Rendering of Medical Volume Data , 2003, IEEE Computer Graphics and Applications.

[72]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[73]  Victoria Interrante,et al.  Illustrating transparent surfaces with curvature-directed strokes , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[74]  Aaron Hertzmann,et al.  Illustrating smooth surfaces , 2000, SIGGRAPH.

[75]  David S. Ebert,et al.  Non-photorealistic volume rendering using stippling techniques , 2002, IEEE Visualization, 2002. VIS 2002..

[76]  Andreas Pommert,et al.  A Realistic Model of the Inner Organs from the Visible Human Data , 2000, MICCAI.

[77]  Heinz Handels,et al.  An orthopaedic atlas for the 3D operation planning and the virtual construction of endoprostheses in computer assisted orthopaedic surgery , 2001, CARS.

[78]  Mahes Visvalingam,et al.  Formulated silhouettes for sketching terrain , 2003, Proceedings of Theory and Practice of Computer Graphics, 2003..

[79]  Tobias Isenberg,et al.  OPENNPAR: a system for developing, programming, and designing non-photorealistic animation and rendering , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[80]  Victoria Interrante,et al.  Showing shape with texture: two directions seem better than one , 2003, IS&T/SPIE Electronic Imaging.

[81]  A K Banerjee VOXEL-MAN 3D-Navigator. Brain and skull. Regional, functional and radiological anatomy (2nd edn). CD-ROM. By K-H Höhne et al, 2001 (Springer-Verlag, Heidelberg), £56.40 ISBN 3-540-14910-4 , 2002 .

[82]  Ben Shneiderman,et al.  Designing The User Interface , 2013 .

[83]  Bernhard Preim,et al.  Ein Fallbasiertes Lernsystem für die Behandlung von Lebertumoren , 2004, Bildverarbeitung für die Medizin.

[84]  Tobias Isenberg,et al.  High Quality Hatching , 2004, Comput. Graph. Forum.

[85]  Bruce G. Baumgart Winged edge polyhedron representation. , 1972 .

[86]  Anne Treisman,et al.  Preattentive processing in vision , 1985, Computer Vision Graphics and Image Processing.

[87]  Victoria Interrante,et al.  Conveying shape with texture: an experimental investigation of the impact of texture type on shape categorization judgments , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).