Fully three dimensional breather solitons can be created using feshbach resonances.

We investigate the stability properties of breather solitons in a three-dimensional Bose-Einstein condensate with Feshbach resonance management of the scattering length and confined only by a one-dimensional optical lattice. We compare regions of stability in parameter space obtained from a fully 3D analysis with those from a quasi-two-dimensional treatment. For moderate confinement we discover a new island of stability in the 3D case, not present in the quasi-2D treatment. Stable solutions from this region have non-trivial dynamics in the lattice direction; hence, they describe fully 3D breather solitons. We demonstrate these solutions in direct numerical simulations and outline a possible way of creating robust 3D solitons in experiments in a Bose-Einstein condensate in a one-dimensional lattice. We point out other possible applications.

[1]  Carl E. Wieman,et al.  Dynamics of collapsing and exploding Bose–Einstein condensates , 2001, Nature.

[2]  T. Gustavson,et al.  Realization of Bose-Einstein condensates in lower dimensions. , 2001, Physical review letters.

[3]  B Eiermann,et al.  Bright Bose-Einstein gap solitons of atoms with repulsive interaction. , 2004, Physical review letters.

[4]  Hiroki Saito,et al.  Dynamically stabilized bright solitons in a two-dimensional bose-einstein condensate. , 2003, Physical review letters.

[5]  I. Antoniou,et al.  Solitons and Chaos , 1992 .

[6]  M. Oron,et al.  Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals , 1998 .

[7]  Y. Kivshar,et al.  Controlled generation and steering of spatial gap solitons , 2003, CLEO 2004.

[8]  Boris A. Malomed,et al.  Chapter 2 - Variational methods in nonlinear fiber optics and related fields , 2002 .

[9]  S. D. Ganichev,et al.  Spin-galvanic effect , 2002, Nature.

[10]  Magnetic field dependence of ultracold inelastic collisions near a feshbach resonance , 2000, Physical review letters.

[11]  G. Rowlands,et al.  Nonlinear Waves, Solitons and Chaos , 1990 .

[12]  B. A. Malomed,et al.  Controlling collapse in Bose-Einstein condensates by temporal modulation of the scattering length , 2003 .

[13]  Phillips,et al.  Generating solitons by phase engineering of a bose-einstein condensate , 2000, Science.

[14]  S. Burger,et al.  Dark solitons in Bose-Einstein condensates , 1999, QELS 2000.

[15]  B. Malomed,et al.  Feshbach resonance management for Bose-Einstein condensates. , 2003, Physical review letters.

[16]  B. A. Malomed,et al.  Multidimensional solitons in periodic potentials , 2003 .

[17]  W. Ketterle,et al.  Observation of Feshbach resonances in a Bose–Einstein condensate , 1998, Nature.

[18]  Víctor M. Pérez-García,et al.  Stabilization of solitons of the multidimensional nonlinear Schrodinger equation: Matter-wave breathers , 2003, nlin/0305030.

[19]  C. Salomon,et al.  Formation of a Matter-Wave Bright Soliton , 2002, Science.

[20]  W. Hayes Group velocity and nonlinear dispersive wave propagation , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[21]  B. A. Malomed,et al.  Stabilization of three-dimensional matter-waves solitons in an optical lattice , 2005 .

[22]  T. Brooke Benjamin,et al.  The disintegration of wave trains on deep water Part 1. Theory , 1967, Journal of Fluid Mechanics.