Introduction to the spectral element method for three-dimensional seismic wave propagation

SUMMARY We present an introduction to the spectral element method, which provides an innovative numerical approach to the calculation of synthetic seismograms in 3-D earth models. The method combines the £exibility of a ¢nite element method with the accuracy of a spectral method. One uses a weak formulation of the equations of motion, which are solved on a mesh of hexahedral elements that is adapted to the free surface and to the main internal discontinuities of the model. The wave¢eld on the elements is discretized using high-degree Lagrange interpolants, and integration over an element is accomplished based upon the Gauss^Lobatto^Legendre integration rule. This combination of discretization and integration results in a diagonal mass matrix, which greatly simpli¢es the algorithm. We illustrate the great potential of the method by comparing it to a discrete wavenumber/re£ectivity method for layer-cake models. Both body and surface waves are accurately represented, and the method can handle point force as well as moment tensor sources. For a model with very steep surface topography we successfully benchmark the method against an approximate boundary technique. For a homogeneous medium with strong attenuation we obtain excellent agreement with the analytical solution for a point force.

[1]  O. Zienkiewicz The Finite Element Method In Engineering Science , 1971 .

[2]  Don L. Anderson,et al.  Velocity dispersion due to anelasticity; implications for seismology and mantle composition , 1976 .

[3]  K. R. Kelly,et al.  SYNTHETIC SEISMOGRAMS: A FINITE ‐DIFFERENCE APPROACH , 1976 .

[4]  M. Bouchon A simple method to calculate Green's functions for elastic layered media , 1981 .

[5]  K. Marfurt Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations , 1984 .

[6]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[7]  G. Touzot,et al.  The finite element method displayed , 1984 .

[8]  G. Mueller,et al.  The reflectivity method; a tutorial , 1985 .

[9]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[10]  I. Babuska,et al.  Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .

[11]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[12]  M. Korn,et al.  Incorporation of attenuation into time-domain computations of seismic wave fields , 1987 .

[13]  J. Sochacki Absorbing boundary conditions for the elastic wave equations , 1988 .

[14]  Ronnie Kosloff,et al.  Wave propagation simulation in a linear viscoacoustic medium , 1988 .

[15]  Marijan Dravinski,et al.  Scattering of elastic waves by three-dimensional surface topographies , 1989 .

[16]  L. Pérez-Rocha,et al.  Diffraction of elastic waves by three-dimensional surface irregularities. Part II , 1989 .

[17]  Yvon Maday,et al.  Coupling finite element and spectral methods: first results , 1990 .

[18]  Yvon Maday,et al.  Optimal error analysis of spectral methods with emphasis on non-constant coefficients and deformed geometries , 1990 .

[19]  Géza Seriani,et al.  High-order spectral element method for elastic wave modeling: 62nd Ann , 1991 .

[20]  Géza Seriani,et al.  Numerical simulation of interface waves by high‐order spectral modeling techniques , 1992 .

[21]  Alfred Behle,et al.  Multi-domain Chebyshev-Fourier method for the solution of the equations of motion of dynamic elasticity , 1992 .

[22]  Paul Fischer,et al.  Spectral element methods for large scale parallel Navier—Stokes calculations , 1994 .

[23]  J. C. Simo,et al.  How to render second order accurate time-stepping algorithms fourth order accurate while retaining the stability and conservation properties , 1994 .

[24]  Robert J. Geller,et al.  Computation of synthetic seismograms and their partial derivatives for heterogeneous media with arbitrary natural boundary conditions using the Direct Solution Method , 1994 .

[25]  J. Carcione The wave equation in generalized coordinates , 1994 .

[26]  Ekkehart Tessmer,et al.  3-D elastic modeling with surface topography by a Chebychev spectral method , 1994 .

[27]  Joakim O. Blanch,et al.  Viscoelastic finite-difference modeling , 1994 .

[28]  Géza Seriani,et al.  Spectral element method for acoustic wave simulation in heterogeneous media , 1994 .

[29]  Heiner Igel,et al.  Anisotropic wave propagation through finite-difference grids , 1995 .

[30]  Dimitri Komatitsch,et al.  Tensorial formulation of the wave equation for modelling curved interfaces , 1996 .

[31]  D. Wald Slip History of the 1995 Kobe, Japan, Earthquake Determined from Strong Motion, Teleseismic, and Geodetic Data , 1996 .

[32]  Robert W. Graves,et al.  Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences , 1996, Bulletin of the Seismological Society of America.

[33]  Kim B. Olsen,et al.  Three-dimensional simulation of earthquakes on the Los Angeles fault system , 1996, Bulletin of the Seismological Society of America.

[34]  P. Paolucci,et al.  The “Cubed Sphere” , 1996 .

[35]  Johan O. A. Robertsson,et al.  A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography , 1996 .

[36]  Craig A. Schultz,et al.  Effect of three‐dimensional topography on seismic motion , 1996 .

[37]  Géza Seriani,et al.  A Parallel Spectral Element Method for Acoustic Wave Modeling , 1997 .

[38]  A. Posadas,et al.  Diffraction of P, S and Rayleigh waves by three-dimensional topographies , 1997 .

[39]  Bernard A. Chouet,et al.  A free-surface boundary condition for including 3D topography in the finite-difference method , 1997, Bulletin of the Seismological Society of America.

[40]  D. Komatitsch Methodes spectrales et elements spectraux pour l'equation de l'elastodynamique 2d et 3d en milieu heterogene , 1997 .

[41]  Ezio Faccioli,et al.  2d and 3D elastic wave propagation by a pseudo-spectral domain decomposition method , 1997 .

[42]  José M. Carcione,et al.  Hybrid modeling of P-SV seismic motion at inhomogeneous viscoelastic topographic structures , 1997, Bulletin of the Seismological Society of America.

[43]  David R. O'Hallaron,et al.  Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers , 1998 .

[44]  Robert W. Graves,et al.  The seismic response of the Los Angeles basin, California , 1998, Bulletin of the Seismological Society of America.

[45]  Géza Seriani,et al.  3-D large-scale wave propagation modeling by spectral element method on Cray T3E multiprocessor , 1998 .

[46]  D. Komatitsch,et al.  The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures , 1998, Bulletin of the Seismological Society of America.

[47]  Kojiro Irikura,et al.  Three-dimensional simulation of the near-fault ground motion for the 1995 Hyogo-Ken Nanbu (Kobe), Japan, earthquake , 1998, Bulletin of the Seismological Society of America.

[48]  B. Kennett,et al.  Seismic wavefield calculation for laterally heterogeneous whole earth models using the pseudospectral method , 1998 .

[49]  Jeroen Tromp,et al.  The spectral element method for elastic wave equations: Application seismic problems to 2D and 3D , 1998 .

[50]  Alfio Quarteroni,et al.  Generalized Galerkin approximations of elastic waves with absorbing boundary conditions , 1998 .

[51]  Steven M. Day,et al.  Efficient simulation of constant Q using coarse-grained memory variables , 1998, Bulletin of the Seismological Society of America.

[52]  Ezio Faccioli,et al.  3D Response analysis of an instrumented hill at Matsuzaki, Japan, by a spectral method , 1999 .

[53]  D Komatitsch,et al.  CASTILLO-COVARRUBIAS JM, SANCHEZ-SESMA FJ. THE SPECTRAL ELEMENT METHOD FOR ELASTIC WAVE EQUATIONS-APPLICATION TO 2-D AND 3-D SEISMIC PROBLEMS , 1999 .

[54]  E. S. Krebes,et al.  Applying finite element analysis to the memory variable formulation of wave propagation in anelastic media , 1999 .

[55]  D. Komatitsch,et al.  Simulation of anisotropic wave propagation based upon a spectral element method , 2000 .

[56]  D. Komatitsch,et al.  Wave propagation near a fluid-solid interface : A spectral-element approach , 2000 .

[57]  G. Seriani,et al.  Modelling Waves in Anisotropic Media by a Spectral Element Method , 2001 .