Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease

We review the cellular and physiological mechanisms responsible for the regulation of blood flow in the retina and choroid in health and disease. Due to the intrinsic light sensitivity of the retina and the direct visual accessibility of fundus blood vessels, the eye offers unique opportunities for the non-invasive investigation of mechanisms of blood flow regulation. The ability of the retinal vasculature to regulate its blood flow is contrasted with the far more restricted ability of the choroidal circulation to regulate its blood flow by virtue of the absence of glial cells, the markedly reduced pericyte ensheathment of the choroidal vasculature, and the lack of intermediate filaments in choroidal pericytes. We review the cellular and molecular components of the neurovascular unit in the retina and choroid, techniques for monitoring retinal and choroidal blood flow, responses of the retinal and choroidal circulation to light stimulation, the role of capillaries, astrocytes and pericytes in regulating blood flow, putative signaling mechanisms mediating neurovascular coupling in the retina, and changes that occur in the retinal and choroidal circulation during diabetic retinopathy, age-related macular degeneration, glaucoma, and Alzheimer's disease. We close by discussing issues that remain to be explored.

[1]  C. Riva,et al.  Flicker-evoked responses of human optic nerve head blood flow: luminance versus chromatic modulation. , 2001, Investigative ophthalmology & visual science.

[2]  J. Schnitzer Chapter 7 Astrocytes in mammalian retina , 1988 .

[3]  I. Herman,et al.  Microvascular pericytes contain muscle and nonmuscle actins , 1985, The Journal of cell biology.

[4]  H. Hammes,et al.  Retinal overexpression of angiopoietin-2 mimics diabetic retinopathy and enhances vascular damages in hyperglycemia , 2010, Acta Diabetologica.

[5]  G. Polunin,et al.  [Pathogenesis of age-related macular degeneration]. , 2006, Vestnik oftalmologii.

[6]  Angus M'Gillivray,et al.  The Ocular Circulation , 1904, Edinburgh Medical Journal.

[7]  W. Vilser,et al.  Flicker observation light induces diameter response in retinal arterioles: a clinical methodological study , 2003, The British journal of ophthalmology.

[8]  I. Constable,et al.  Retinal Microvascular Patency in the Diabetic Rat , 2004, International Ophthalmology.

[9]  D. Carpenter,et al.  Choroidal blood flow as a heat dissipating mechanism in the macula. , 1980, American journal of ophthalmology.

[10]  Yen-Yu I Shih,et al.  Lamina-specific functional MRI of retinal and choroidal responses to visual stimuli. , 2011, Investigative ophthalmology & visual science.

[11]  渡辺 五郎 Imaging of choroidal hemodynamics in eyes with polypoidal choroidal vasculopathy using laser speckle phenomenon , 2008 .

[12]  Sumon Roy,et al.  Aging increases retinal vascular lesions characteristic of early diabetic retinopathy , 2010, Biogerontology.

[13]  R. Danis,et al.  Retinal blood flow during dynamic exercise , 1996, Graefe's Archive for Clinical and Experimental Ophthalmology.

[14]  Toke Bek,et al.  Interaction between flicker-induced vasodilatation and pressure autoregulation in early retinopathy of Type 2 diabetes , 2008, Graefe's Archive for Clinical and Experimental Ophthalmology.

[15]  J. Gidday,et al.  KATP channels mediate adenosine-induced hyperemia in retina. , 1996, Investigative ophthalmology & visual science.

[16]  R. Linsenmeier,et al.  Effects of light and darkness on oxygen distribution and consumption in the cat retina , 1986, The Journal of general physiology.

[17]  T. Lüscher,et al.  Endothelin-1 plasma levels in normal-tension glaucoma: abnormal response to postural changes , 1995, Graefe's Archive for Clinical and Experimental Ophthalmology.

[18]  C. Prünte,et al.  Quantification of choroidal blood-flow parameters using indocyanine green video-fluorescence angiography and statistical picture analysis , 2005, Graefe's Archive for Clinical and Experimental Ophthalmology.

[19]  A. Bill,et al.  The role of nitric oxide in hyperaemic response to flicker in the retina and optic nerve in cats. , 2009, Acta ophthalmologica Scandinavica.

[20]  J. Hollyfield,et al.  Developmental Anatomy of the Retinal and Choroidal Vasculature , 2010 .

[21]  W. Goto,et al.  Effects of adenosine on optic nerve head circulation in rabbits. , 2004, Experimental eye research.

[22]  T. Sugiyama,et al.  Association of endothelin-1 with normal tension glaucoma: clinical and fundamental studies. , 1995, Survey of ophthalmology.

[23]  T. Mexia,et al.  Author ' s personal copy , 2009 .

[24]  V. Ganapathy,et al.  Death of retinal neurons in streptozotocin-induced diabetic mice. , 2004, Investigative ophthalmology & visual science.

[25]  Y. Le,et al.  Temporal requirement of RPE‐derived VEGF in the development of choroidal vasculature , 2010, Journal of neurochemistry.

[26]  B L Petrig,et al.  Choroidal blood flow in the foveal region of the human ocular fundus. , 1994, Investigative ophthalmology & visual science.

[27]  John Calvin Reed,et al.  Bax is increased in the retina of diabetic subjects and is associated with pericyte apoptosis in vivo and in vitro. , 2000, The American journal of pathology.

[28]  R. Frank Growth factors in age-related macular degeneration: pathogenic and therapeutic implications. , 1997, Ophthalmic research.

[29]  J. Schuman,et al.  Optical coherence tomography. , 2000, Science.

[30]  Marcus Fruttiger,et al.  Development of the retinal vasculature , 2007, Angiogenesis.

[31]  J. Flammer,et al.  Choroidal blood flow response to isometric exercise in glaucoma patients and patients with ocular hypertension. , 2011, Investigative ophthalmology & visual science.

[32]  F. Faraci,et al.  Endothelium-Derived Hyperpolarizing Factor: Where Are We Now? , 2006, Arteriosclerosis, thrombosis, and vascular biology.

[33]  R. Wojcikiewicz,et al.  Limited intravascular coupling in the rodent brainstem and retina supports a role for glia in regional blood flow , 2008, The Journal of comparative neurology.

[34]  E. Newman,et al.  Oxygen modulation of neurovascular coupling in the retina , 2011, Proceedings of the National Academy of Sciences.

[35]  M. Rayborn,et al.  Observations on the ultrastructure of the developing primate choroid coat. , 1978, Experimental eye research.

[36]  H. Hammes,et al.  Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina. , 2006, Diabetes.

[37]  Timothy Q. Duong,et al.  Structural and functional MRI reveals multiple retinal layers , 2006, Proceedings of the National Academy of Sciences.

[38]  A. Bill,et al.  Control of retinal and choroidal blood flow , 1990, Eye.

[39]  F. D. de Oliveira,et al.  Pericytes in diabetic retinopathy. , 1966, The British journal of ophthalmology.

[40]  P T de Jong,et al.  An international classification and grading system for age-related maculopathy and age-related macular degeneration , 1995 .

[41]  G. Liu,et al.  Contractility of retinal pericytes grown on silicone elastomer substrates is through a protein kinase A-mediated intracellular pathway in response to vasoactive peptides. , 2007, IET nanobiotechnology.

[42]  D. Puro,et al.  Physiology of rat retinal pericytes: modulation of ion channel activity by serum‐derived molecules , 1999, The Journal of physiology.

[43]  B. Olsen,et al.  Vascular endothelial growth factor expression in the retinal pigment epithelium is essential for choriocapillaris development and visual function. , 2005, The American journal of pathology.

[44]  G Michelson,et al.  Principle, Validity, and Reliability of Scanning Laser Doppler Flowmetry , 1996, Journal of glaucoma.

[45]  J. Grunwald,et al.  Optic nerve and choroidal circulation in glaucoma. , 1998, Investigative ophthalmology & visual science.

[46]  T. Chan-Ling,et al.  Changes in pericytes and smooth muscle cells in the kitten model of retinopathy of prematurity: implications for plus disease. , 2007, Investigative ophthalmology & visual science.

[47]  C E Riva,et al.  Autoregulation of retinal circulation in response to decrease of perfusion pressure. , 1981, Investigative ophthalmology & visual science.

[48]  E. Newman,et al.  Potassium buffering in the central nervous system , 2004, Neuroscience.

[49]  L. Schmetterer,et al.  Influence of flicker frequency on flicker-induced changes of retinal vessel diameter. , 2002, Investigative ophthalmology & visual science.

[50]  C. Kilo,et al.  Pericyte form and distribution in rat retinal and uveal capillaries. , 1985, Investigative ophthalmology & visual science.

[51]  T. Ishikawa Fine structure of retinal vessels in man and the macaque monkey. , 1963, Investigative ophthalmology.

[52]  C. Gerhardinger,et al.  Müller cell changes in human diabetic retinopathy. , 1998, Diabetes.

[53]  H. Hammes,et al.  Pericyte migration : A novel mechanism of pericyte loss in experimental diabetic retinopathy , 2008 .

[54]  C. Riva,et al.  Functional laser Doppler flowmetry of the optic nerve: physiological aspects and clinical applications. , 2008, Progress in brain research.

[55]  Josh Wallman,et al.  The multifunctional choroid , 2010, Progress in Retinal and Eye Research.

[56]  Ogura In vivo evaluation of leukocyte dynamics in the retinal and choroidal circulation , 2000, Japanese journal of ophthalmology.

[57]  A. Kazlauskas,et al.  Pericytes and ocular diseases. , 2008, Experimental eye research.

[58]  J. Flammer,et al.  Relationship Between Retinal Glial Cell Activation in Glaucoma and Vascular Dysregulation , 2007, Journal of glaucoma.

[59]  D. Puro,et al.  Nitric oxide/cGMP-induced inhibition of calcium and chloride currents in retinal pericytes. , 2001, Microvascular research.

[60]  C. Delaey,et al.  Regulatory Mechanisms in the Retinal and Choroidal Circulation , 2000, Ophthalmic Research.

[61]  I. Herman,et al.  Pericyte Rho GTPase mediates both pericyte contractile phenotype and capillary endothelial growth state. , 2007, The American journal of pathology.

[62]  B. Petrig,et al.  Retinal autoregulation in open-angle glaucoma. , 1984, Ophthalmology.

[63]  J. Provis Development of the Primate Retinal Vasculature , 2001, Progress in Retinal and Eye Research.

[64]  M. Shahidi,et al.  Chorioretinal vascular oxygen tension changes in response to light flicker. , 2006, Investigative ophthalmology & visual science.

[65]  R. Shonat,et al.  Flicker evoked increase in optic nerve head blood flow in anesthetized cats , 1991, Neuroscience Letters.

[66]  A. Vingrys,et al.  Paired-flash identification of rod and cone dysfunction in the diabetic rat. , 2004, Investigative ophthalmology & visual science.

[67]  H. Quigley,et al.  The number of people with glaucoma worldwide in 2010 and 2020 , 2006, British Journal of Ophthalmology.

[68]  T. Takano,et al.  Astrocyte-mediated control of cerebral blood flow , 2006, Nature Neuroscience.

[69]  K. Trudeau,et al.  Reduced connexin 43 expression and its effect on the development of vascular lesions in retinas of diabetic mice. , 2010, Investigative ophthalmology & visual science.

[70]  R. Aldrich,et al.  Local potassium signaling couples neuronal activity to vasodilation in the brain , 2006, Nature Neuroscience.

[71]  O B Paulson,et al.  Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? , 1987, Science.

[72]  Donald E. Ingber,et al.  A mechanosensitive transcriptional mechanism that controls angiogenesis , 2009, Nature.

[73]  Shing-Chung Ngan,et al.  Functional magnetic resonance imaging of the retina. , 2002, Investigative ophthalmology & visual science.

[74]  R. Engerman,et al.  Cell turnover of capillaries. , 1967, Laboratory investigation; a journal of technical methods and pathology.

[75]  C. Iadecola,et al.  Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. , 2006, Journal of applied physiology.

[76]  M. C. Leske,et al.  Predictors of long-term progression in the early manifest glaucoma trial. , 2007, Ophthalmology.

[77]  David Huang,et al.  Flicker-induced changes in retinal blood flow assessed by Doppler optical coherence tomography , 2011, Biomedical optics express.

[78]  F. Pomero,et al.  Effects of protein kinase C inhibition and activation on proliferation and apoptosis of bovine retinal pericytes , 2003, Diabetologia.

[79]  G. Ying,et al.  Association of risk factors for choroidal neovascularization in age-related macular degeneration with decreased foveolar choroidal circulation. , 2010, American journal of ophthalmology.

[80]  B L Petrig,et al.  Reactivity of the human retinal circulation to darkness: a laser Doppler velocimetry study. , 1983, Investigative ophthalmology & visual science.

[81]  U. Schmidt-Erfurth,et al.  Retinal optical coherence tomography: past, present and future perspectives , 2010, British Journal of Ophthalmology.

[82]  T. Curtis,et al.  Microvascular lesions of diabetic retinopathy: clues towards understanding pathogenesis? , 2009, Eye.

[83]  D. Carpenter,et al.  THE STABILIZING EFFECT OF THE CHOROIDAL CIRCULATION ON THE TEMPERATURE ENVIRONMENT OF THE MACULA , 1982, Retina.

[84]  L. Schmetterer,et al.  Flicker light-induced vasodilatation in the human retina: effect of lactate and changes in mean arterial pressure. , 2003, Investigative ophthalmology & visual science.

[85]  L. Schmetterer,et al.  Influence of diffuse luminance flicker on choroidal and optic nerve head blood flow , 2002, Current eye research.

[86]  H. Granger,et al.  Nerve growth factor regulates human choroidal, but not retinal, endothelial cell migration and proliferation , 2003, Autonomic Neuroscience.

[87]  G. King,et al.  Evaluating retinal circulation using video fluorescein angiography in control and diabetic rats. , 1992, Current eye research.

[88]  D. Archer,et al.  Ocular hypertension induced by scleral suction cup. , 1972, Investigative ophthalmology.

[89]  T. Yorio,et al.  Endothelin, astrocytes and glaucoma. , 2011, Experimental eye research.

[90]  T. Duong,et al.  MRI of retinal and choroidal blood flow with laminar resolution , 2011, NMR in biomedicine.

[91]  G. Michelson,et al.  MORPHOMETRIC AGE-RELATED EVALUATION OF SMALL RETINAL VESSELS BY SCANNING LASER DOPPLER FLOWMETRY: Determination of a Vessel Wall Index , 2007, Retina.

[92]  W. Li,et al.  Expression of apoptosis regulatory genes by retinal pericytes after rapid glucose reduction. , 1998, Investigative ophthalmology & visual science.

[93]  Leopold Schmetterer,et al.  A comparison between laser interferometric measurement of fundus pulsation and pneumotonometric measurement of pulsatile ocular blood flow 2. Effects of changes in pCO2 and pO2 and of isoproterenol , 2000, Eye.

[94]  T. Gardner,et al.  Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. , 1998, The Journal of clinical investigation.

[95]  T J Ebner,et al.  Nitric oxide contributes to functional hyperemia in cerebellar cortex. , 1995, The American journal of physiology.

[96]  C. Riva,et al.  Effect of an insulin-induced decrease in blood glucose on the human diabetic retinal circulation. , 1987, Ophthalmology.

[97]  A. Grinvald,et al.  Compartment-Resolved Imaging of Activity-Dependent Dynamics of Cortical Blood Volume and Oximetry , 2005, The Journal of Neuroscience.

[98]  D. R. Bacon,et al.  An in vivo model of chronic optic nerve ischemia: the dose-dependent effects of endothelin-1 on the optic nerve microvasculature. , 1995, Current eye research.

[99]  Atsuo Tomidokoro,et al.  In vivo measurement of blood velocity in human major retinal vessels using the laser speckle method. , 2011, Investigative ophthalmology & visual science.

[100]  T. Curtis,et al.  Arteriolar Involvement in the Microvascular Lesions of Diabetic Retinopathy: Implications for Pathogenesis , 2007, Microcirculation.

[101]  J. Salazar,et al.  Substance P and calcitonin gene-related peptide intrinsic choroidal neurons in human choroidal whole-mounts. , 2008, Histology and histopathology.

[102]  B. MacVicar,et al.  Calcium transients in astrocyte endfeet cause cerebrovascular constrictions , 2004, Nature.

[103]  Jack C. de la Torre,et al.  Chapter 3 Cerebrovascular and Cardiovascular Pathology in Alzheimer's Disease , 2009 .

[104]  T. Hikichi,et al.  Pulsatile ocular blood flow study: decreases in exudative age related macular degeneration , 2001, The British journal of ophthalmology.

[105]  L. Schmetterer,et al.  Nitric oxide regulates retinal vascular tone in humans. , 2003, American journal of physiology. Heart and circulatory physiology.

[106]  B. Lévy,et al.  Excessive Microvascular Adaptation to Changes in Blood Flow in Mice Lacking Gene Encoding for Desmin , 2002, Arteriosclerosis, thrombosis, and vascular biology.

[107]  T. Bek,et al.  Increased blood pressure induces a diameter response of retinal arterioles that increases with decreasing arteriolar diameter. , 2007, Investigative ophthalmology & visual science.

[108]  G Michelson,et al.  Perfusion of the Juxtapapillary Retina and the Neuroretinal Rim Area in Primary Open Angle Glaucoma , 1996, Journal of glaucoma.

[109]  B. Petrig,et al.  Choroidal blood flow during exercise-induced changes in the ocular perfusion pressure. , 2003, Investigative ophthalmology & visual science.

[110]  M. Blum,et al.  Noninvasive measurement of the Bayliss effect in retinal autoregulation , 1999, Graefe's Archive for Clinical and Experimental Ophthalmology.

[111]  M. Tsilimbaris,et al.  Ocular rigidity in patients with age-related macular degeneration. , 2006, American journal of ophthalmology.

[112]  L. Schmetterer,et al.  Assessment of optic disk blood flow in patients with open-angle glaucoma. , 2000, American journal of ophthalmology.

[113]  L. Kuo,et al.  Requisite roles of A2A receptors, nitric oxide, and KATP channels in retinal arteriolar dilation in response to adenosine. , 2005, Investigative ophthalmology & visual science.

[114]  B. Petrig,et al.  Blood flow in the human optic nerve head during isometric exercise. , 1998, Experimental eye research.

[115]  M. J. Davis,et al.  Signaling mechanisms underlying the vascular myogenic response. , 1999, Physiological reviews.

[116]  Charles E. Riva,et al.  Regulation of retinal blood flow in health and disease , 2008, Progress in Retinal and Eye Research.

[117]  P. D. de Jong,et al.  Increased expression of angiogenic growth factors in age-related maculopathy , 1997, The British journal of ophthalmology.

[118]  R. Chang,et al.  Neurodegeneration of the retina in mouse models of Alzheimer’s disease: what can we learn from the retina? , 2011, AGE.

[119]  J. Salazar,et al.  Structural Specializations of Human Retinal Glial Cells , 1996, Vision Research.

[120]  Ryo Kawasaki,et al.  Flicker Light–Induced Retinal Vasodilation in Diabetes and Diabetic Retinopathy , 2009, Diabetes Care.

[121]  A. Alm,et al.  The effect of sympathetic stimulation on blood flow through the uvea, retina and optic nerve in monkeys (Macaca irus) , 1977 .

[122]  Lin Wang,et al.  Retinal and choroidal vasoreactivity to altered PaCO2 in rat measured with a modified microsphere technique. , 2008, Experimental eye research.

[123]  A. Laties Central retinal artery innervation. Absence of adrenergic innervation to the intraocular branches. , 1967, Archives of ophthalmology.

[124]  M. Madigan,et al.  Differential expression of GFAP in early v late AMD: a quantitative analysis , 2003, The British journal of ophthalmology.

[125]  S. Nilsson Nitric oxide as a mediator of parasympathetic vasodilation in ocular and extraocular tissues in the rabbit. , 1996, Investigative ophthalmology & visual science.

[126]  L. Kagemann,et al.  Progress in measurement of ocular blood flow and relevance to our understanding of glaucoma and age-related macular degeneration , 1999, Progress in Retinal and Eye Research.

[127]  R. Koehler,et al.  Metabotropic Glutamate Receptor Activation Enhances the Activities of Two Types of Ca2+-Activated K+Channels in Rat Hippocampal Astrocytes , 2003, The Journal of Neuroscience.

[128]  K. Kojima [Studies on diabetic retinopathy]. , 1966, Nippon Ganka Gakkai zasshi.

[129]  J. Richardson,et al.  Characterisation of amyloid-induced inflammatory responses in the rat retina , 2011, Experimental Brain Research.

[130]  G. Yang,et al.  Obligatory role of NO in glutamate-dependent hyperemia evoked from cerebellar parallel fibers. , 1997, The American journal of physiology.

[131]  D. Henrion,et al.  Selective microvascular dysfunction in mice lacking the gene encoding for desmin , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[132]  W. Schaper,et al.  Presence of Cx37 and lack of desmin in smooth muscle cells are early markers for arteriogenesis , 2004, Molecular and Cellular Biochemistry.

[133]  Eric A Newman,et al.  Glial Cells Dilate and Constrict Blood Vessels: A Mechanism of Neurovascular Coupling , 2006, The Journal of Neuroscience.

[134]  G. Romeo,et al.  Response of capillary cell death to aminoguanidine predicts the development of retinopathy: comparison of diabetes and galactosemia. , 2000, Investigative ophthalmology & visual science.

[135]  R. Funk,et al.  Blockers of carbonic anhydrase can cause increase of retinal capillary diameter, decrease of extracellular and increase of intracellular pH in rat retinal organ culture , 2003, Graefe's Archive for Clinical and Experimental Ophthalmology.

[136]  Don H. Anderson,et al.  The pivotal role of the complement system in aging and age-related macular degeneration: Hypothesis re-visited , 2010, Progress in retinal and eye research.

[137]  J. Taylor,et al.  Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[138]  I. Ferrer,et al.  Desmin-related myopathy: clinical, electrophysiological, radiological, neuropathological and genetic studies , 2004, Journal of the Neurological Sciences.

[139]  M. Rubart,et al.  Relaxation of Arterial Smooth Muscle by Calcium Sparks , 1995, Science.

[140]  H. Tachibana,et al.  Retinal vascular autoregulation in normal subjects. , 1982, Stroke.

[141]  J. G. McGeown,et al.  Cellular Physiology of Retinal and Choroidal Arteriolar Smooth Muscle Cells , 2007, Microcirculation.

[142]  Jens Dawczynski,et al.  Influence of Flickering Light on the Retinal Vessels in Diabetic Patients , 2008, Diabetes Care.

[143]  Y. Shih,et al.  The choroidal blood flow response after flicker stimulation in chicks. , 1997, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[144]  C. Doré,et al.  Autoregulation in the human retinal circulation: assessment using isometric exercise, laser Doppler velocimetry, and computer-assisted image analysis. , 1996, Microvascular research.

[145]  D. Silver,et al.  Pressure-volume relation for the living human eye. , 2000, Current eye research.

[146]  D. Bereiter,et al.  Bright light activates a trigeminal nociceptive pathway , 2010, PAIN®.

[147]  D. R. Anderson,et al.  Adenosine-induced relaxation of cultured bovine retinal pericytes. , 1997, Investigative ophthalmology & visual science.

[148]  M. Leduc,et al.  Potential role of microglia in retinal blood vessel formation. , 2006, Investigative ophthalmology & visual science.

[149]  A. Laties,et al.  Peptidergic innervation of the retinal vasculature and optic nerve head. , 1990, Investigative ophthalmology & visual science.

[150]  L. Schmetterer,et al.  Diffuse luminance flicker increases blood flow in major retinal arteries and veins , 2004, Vision Research.

[151]  Joseph A Izatt,et al.  Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases. , 2011, Investigative ophthalmology & visual science.

[152]  T. Chan-Ling,et al.  Astrocyte-endothelial cell relationships during human retinal vascular development. , 2004, Investigative ophthalmology & visual science.

[153]  B. Duling,et al.  Connexin 43 and connexin 40 gap junctional proteins are present in arteriolar smooth muscle and endothelium in vivo. , 1995, The American journal of physiology.

[154]  S. Cringle,et al.  Intraretinal oxygen distribution in the rat with graded systemic hyperoxia and hypercapnia. , 1999, Investigative ophthalmology & visual science.

[155]  C. Scholfield,et al.  Advanced glycation endproduct modified basement membrane attenuates endothelin-1 induced [Ca2+]i signalling and contraction in retinal microvascular pericytes. , 2004, Molecular vision.

[156]  D. R. Anderson,et al.  Oxygen modulation of guanylate cyclase-mediated retinal pericyte relaxations with 3-morpholino-sydnonimine and atrial natriuretic peptide. , 1997, Investigative ophthalmology & visual science.

[157]  T. Chan-Ling The Blood Retinal Interface: Similarities and Contrasts with the Blood‐Brain Interface , 2007 .

[158]  R. Engerman Development of the macular circulation. , 1976, Investigative ophthalmology.

[159]  D. Puro,et al.  Diabetes-induced inhibition of voltage-dependent calcium channels in the retinal microvasculature: role of spermine. , 2010, Investigative ophthalmology & visual science.

[160]  L. Schmetterer,et al.  Twelve hour reproducibility of choroidal blood flow parameters in healthy subjects , 2004, British Journal of Ophthalmology.

[161]  A. Reichenbach,et al.  Membrane conductance of Müller glial cells in proliferative diabetic retinopathy. , 2002, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[162]  H. Hercule,et al.  Nitric oxide-epoxygenase interactions and arachidonate-induced dilation of rat renal microvessels. , 2003, American journal of physiology. Heart and circulatory physiology.

[163]  D. Puro,et al.  Cholinergic regulation of pericyte-containing retinal microvessels. , 2003, American journal of physiology. Heart and circulatory physiology.

[164]  R W Flower,et al.  Variability in choriocapillaris blood flow distribution. , 1995, Investigative ophthalmology & visual science.

[165]  M. Hill,et al.  Myogenic contraction in rat skeletal muscle arterioles: smooth muscle membrane potential and Ca(2+) signaling. , 2005, American journal of physiology. Heart and circulatory physiology.

[166]  Turgay Dalkara,et al.  Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery , 2009, Nature Medicine.

[167]  Eric A Newman,et al.  Neurovascular Coupling Is Not Mediated by Potassium Siphoning from Glial Cells , 2007, The Journal of Neuroscience.

[168]  Wynne Hsu,et al.  Alterations in Retinal Microvascular Geometry in Young Type 1 Diabetes , 2010, Diabetes Care.

[169]  A. Reichenbach,et al.  Expression of potassium channels during postnatal differentiation of rabbit Müller glial cells , 1999, The European journal of neuroscience.

[170]  T. Akata Cellular and molecular mechanisms regulating vascular tone. Part 2: regulatory mechanisms modulating Ca2+ mobilization and/or myofilament Ca2+ sensitivity in vascular smooth muscle cells , 2007, Journal of Anesthesia.

[171]  C. Betsholtz,et al.  Endothelial/Pericyte Interactions , 2005, Circulation research.

[172]  T. Chan-Ling,et al.  Aging‐related changes in astrocytes in the rat retina: imbalance between cell proliferation and cell death reduces astrocyte availability , 2008, Aging cell.

[173]  E. Kohner,et al.  Retinal vascular autoregulation in conditions of hyperoxia and hypoxia using the blue field entoptic phenomenon. , 1985, Ophthalmology.

[174]  Milan Sonka,et al.  Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. , 2009, Investigative ophthalmology & visual science.

[175]  D. Puro,et al.  ATP: a vasoactive signal in the pericyte‐containing microvasculature of the rat retina , 2003, The Journal of physiology.

[176]  Y. Ohta,et al.  Microvascular pattern of the retina in the Japanese monkey (Macaca fuscata fuscata). , 1994, Scanning microscopy.

[177]  N. Yüksel,et al.  Relationship between Cognitive Impairment and Retinal Morphological and Visual Functional Abnormalities in Alzheimer Disease , 2006, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society.

[178]  F. Galassi,et al.  Systemic vascular dysregulation and retrobulbar hemodynamics in normal-tension glaucoma. , 2011, Investigative ophthalmology & visual science.

[179]  M. Nelson,et al.  Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure , 1998, The Journal of physiology.

[180]  P. Weigel,et al.  Microvessels from Alzheimer's disease brains kill neurons in vitro. , 1999, The American journal of pathology.

[181]  Leopold Schmetterer,et al.  Ocular blood flow in diabetes and age-related macular degeneration. , 2008, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[182]  Tien Yin Wong,et al.  Retinal arteriolar narrowing, hypertension, and subsequent risk of diabetes mellitus. , 2005, Archives of internal medicine.

[183]  D. Puro Diabetes-induced dysfunction of retinal Müller cells. , 2002, Transactions of the American Ophthalmological Society.

[184]  D. Puro,et al.  Functional KATP channels in the rat retinal microvasculature: topographical distribution, redox regulation, spermine modulation and diabetic alteration , 2009, The Journal of physiology.

[185]  T. Chan-Ling,et al.  Evidence of hematopoietic differentiation, vasculogenesis and angiogenesis in the formation of human choroidal blood vessels. , 2011, Experimental eye research.

[186]  T. Chan-Ling,et al.  The effect of oxygen on vasoformative cell division. Evidence that 'physiological hypoxia' is the stimulus for normal retinal vasculogenesis. , 1995, Investigative ophthalmology & visual science.

[187]  N. Ashton,et al.  Retinal angiogenesis in the human embryo. , 1970, British medical bulletin.

[188]  F. Sundler,et al.  Neuropeptide Y immunoreactive neurons in the guinea-pig uvea and retina. , 1984, Investigative ophthalmology & visual science.

[189]  T. Gardner,et al.  The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. , 2011, Investigative ophthalmology & visual science.

[190]  J. Stone,et al.  Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[191]  山西 茂喜 Extracellular lactate as a dynamic vasoactive signal in the rat retinal microvasculature , 2008 .

[192]  D. Alsop,et al.  Blood flow quantification of the human retina with MRI , 2011, NMR in biomedicine.

[193]  M. Wolzt,et al.  Ocular haemodynamics and colour contrast sensitivity in patients with type 1 diabetes , 2000, The British journal of ophthalmology.

[194]  R. Danis,et al.  Hyperoxia improves contrast sensitivity in early diabetic retinopathy. , 1996, The British journal of ophthalmology.

[195]  D. S. Mcleod,et al.  The embryonic human choriocapillaris develops by hemo‐vasculogenesis , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[196]  D. Puro,et al.  Diabetes-induced disruption of gap junction pathways within the retinal microvasculature. , 2001, Investigative ophthalmology & visual science.

[197]  K. Ashe,et al.  Amyloid-beta deposits lead to retinal degeneration in a mouse model of Alzheimer disease. , 2008, Investigative ophthalmology & visual science.

[198]  Ines Lanzl,et al.  Age, blood pressure, and vessel diameter as factors influencing the arterial retinal flicker response. , 2004, Investigative ophthalmology & visual science.

[199]  Richard F. Brubaker,et al.  Adler's Physiology of the Eye , 1976 .

[200]  C. Scholfield,et al.  Diabetes Downregulates Large-Conductance Ca2+-Activated Potassium &bgr;1 Channel Subunit in Retinal Arteriolar Smooth Muscle , 2007, Circulation research.

[201]  A. Hofman,et al.  Cerebral hypoperfusion and clinical onset of dementia: The Rotterdam study , 2005, Annals of neurology.

[202]  E. Newman Voltage-dependent calcium and potassium channels in retinal glial cells , 1985, Nature.

[203]  L. Aiello,et al.  Activation of PKC-δ and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy , 2009, Nature Medicine.

[204]  A. Patz,et al.  Studies on diabetic retinopathy. 3. Influence of diabetes on intramural pericytes. , 1968, Archives of ophthalmology.

[205]  P. Vanhoutte,et al.  K+ Channels in Cultured Bovine Retinal Pericytes: Effects of &bgr;‐Adrenergic Stimulation , 2003, Journal of cardiovascular pharmacology.

[206]  D. Puro,et al.  Topographical heterogeneity of KIR currents in pericyte‐containing microvessels of the rat retina: effect of diabetes , 2006, The Journal of physiology.

[207]  A. Alm,et al.  Permeability of the intraocular blood vessels. , 1980, Transactions of the ophthalmological societies of the United Kingdom.

[208]  M. Wolzt,et al.  Reduced retinal vessel response to flicker stimulation but not to exogenous nitric oxide in type 1 diabetes. , 2009, Investigative ophthalmology & visual science.

[209]  I Kanno,et al.  Hemodynamics evoked by microelectrical direct stimulation in rat somatosensory cortex. , 1999, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[210]  B. Petrig,et al.  Altered retinal vascular response to 100% oxygen breathing in diabetes mellitus. , 1984, Ophthalmology.

[211]  T. Chan-Ling Vasculogenesis and Angiogenesis in Formation of the Human Retinal Vasculature , 2008 .

[212]  W. L. Weller,et al.  How thick should a retina be? A comparative study of mammalian species with and without intraretinal vasculature , 1991, Vision Research.

[213]  Douglas R. Anderson,et al.  Effect of oxygen on relaxation of retinal pericytes by sodium nitroprusside , 1997, Graefe's Archive for Clinical and Experimental Ophthalmology.

[214]  D. Attwell,et al.  Glial and neuronal control of brain blood flow , 2022 .

[215]  D L DeMets,et al.  Prevalence of diabetes mellitus in southern Wisconsin. , 1984, American journal of epidemiology.

[216]  P. Kador,et al.  Aldose reductase / polyol inhibitors for diabetic retinopathy. , 2011, Current pharmaceutical biotechnology.

[217]  H. Chertkow,et al.  Visual Retinocortical Function in Dementia of the Alzheimer Type , 2002, Gerontology.

[218]  H. Quigley Number of people with glaucoma worldwide. , 1996, The British journal of ophthalmology.

[219]  J. Grunwald,et al.  Changes in Choriocapillaris and Retinal Pigment Epithelium ( RPE ) in Age-Related Macular Degeneration , 1999 .

[220]  Richard E. White,et al.  PGI2 opens potassium channels in retinal pericytes by cyclic AMP-stimulated, cross-activation of PKG. , 2006, Experimental eye research.

[221]  C. Sherrington,et al.  On the Regulation of the Blood‐supply of the Brain , 1890, The Journal of physiology.

[222]  D. Buerk,et al.  Nitric oxide has a vasodilatory role in cat optic nerve head during flicker stimuli. , 1996, Microvascular research.

[223]  Stuart Cantsilieris,et al.  Almost total protection from age-related macular degeneration by haplotypes of the Regulators of Complement Activation. , 2011, Genomics.

[224]  T. Barth,et al.  Detection of disturbed autoregulation of the peripapillary choroid in primary open angle glaucoma. , 1996, Ophthalmic surgery and lasers.

[225]  L. Schmetterer,et al.  Reduced response of retinal vessel diameters to flicker stimulation in patients with diabetes , 2004, British Journal of Ophthalmology.

[226]  E. Newman,et al.  Inhibition of inducible nitric oxide synthase reverses the loss of functional hyperemia in diabetic retinopathy , 2010, Glia.

[227]  Laura A. Hecker,et al.  Copy number variation in the complement factor H-related genes and age-related macular degeneration , 2011, Molecular vision.

[228]  A. Ames,et al.  Energy metabolism of rabbit retina as related to function: high cost of Na+ transport , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[229]  V. Murthy,et al.  Coupling of Neural Activity to Blood Flow in Olfactory Glomeruli Is Mediated by Astrocytic Pathways , 2008, Neuron.

[230]  C. Riva,et al.  Diffuse luminance flicker increases retinal vessel diameter in humans. , 1997, Current eye research.

[231]  R. Porat,et al.  Tissue oxygen levels control astrocyte movement and differentiation in developing retina. , 1999, Brain research. Developmental brain research.

[232]  E. Kohner,et al.  Autoregulation of retinal blood flow in diabetic retinopathy measured by the blue-light entoptic technique. , 1987, Ophthalmology.

[233]  A. Bill,et al.  Glucose metabolism in cat outer retina. Effects of light and hyperoxia. , 1997, Investigative ophthalmology & visual science.

[234]  H. Vinters,et al.  Brain Parenchymal and Microvascular Amyloid in Alzheimer's Disease , 1996, Brain pathology.

[235]  Tien Yin Wong,et al.  Retinal Arteriolar Dilation Predicts Retinopathy in Adolescents With Type 1 Diabetes , 2008, Diabetes Care.

[236]  C. Riva Sub-foveal choroidal blood flow by LDF: measurement and application to the physiology and pathology of the choroidal circulation. , 2006, Bulletin de la Societe belge d'ophtalmologie.

[237]  D. Buerk,et al.  Frequency and luminance-dependent blood flow and K+ ion changes during flicker stimuli in cat optic nerve head. , 1995, Investigative ophthalmology & visual science.

[238]  Paul Martin,et al.  Impaired wound healing in embryonic and adult mice lacking vimentin. , 2000, Journal of cell science.

[239]  L. Kuo,et al.  Divergent roles of nitric oxide and rho kinase in vasomotor regulation of human retinal arterioles. , 2010, Investigative ophthalmology & visual science.

[240]  P. Connell,et al.  The role of pulsatile flow in controlling microvascular retinal endothelial and pericyte cell apoptosis and proliferation. , 2011, Cardiovascular research.

[241]  John G Flanagan,et al.  Retinal arteriolar vascular reactivity in untreated and progressive primary open-angle glaucoma. , 2010, Investigative ophthalmology & visual science.

[242]  A. Fercher,et al.  The effect of hyperoxia and hypercapnia on fundus pulsations in the macular and optic disc region in healthy young men. , 1995, Experimental eye research.

[243]  T. Bek,et al.  Effect of Acidosis on Isolated Porcine Retinal Vessels , 2006, Current eye research.

[244]  Alan W. Stitt,et al.  Functional Anatomy, Fine Structure and Basic Pathology of the Retinal Vasculature , 2007 .

[245]  Timothy Q. Duong,et al.  Blood-flow magnetic resonance imaging of the retina , 2008, NeuroImage.

[246]  M. Hogan,et al.  THE ULTRASTRUCTURE OF THE RETINAL VESSELS. II. THE SMALL VESSELS. , 1963, Journal of ultrastructure research.

[247]  J. Kiel,et al.  Modulation of choroidal autoregulation in the rabbit. , 1999, Experimental eye research.

[248]  Martin Friedlander,et al.  Retinal vascular development is mediated by endothelial filopodia, a preexisting astrocytic template and specific R-cadherin adhesion. , 2002, Investigative ophthalmology & visual science.

[249]  Christopher J. Robinson,et al.  The splice variants of vascular endothelial growth factor (VEGF) and their receptors. , 2001, Journal of cell science.

[250]  Rainer A. Leitgeb,et al.  Stable absolute flow estimation with Doppler OCT based on virtual circumpapillary scans , 2010, Biomedical optics express.

[251]  M. Ross,et al.  Cyclooxygenase-2 Contributes to Functional Hyperemia in Whisker-Barrel Cortex , 2000, The Journal of Neuroscience.

[252]  B. Hindfelt,et al.  Human ocular vasodynamic changes in light and darkness. , 1999, Investigative ophthalmology & visual science.

[253]  T. Chan-Ling,et al.  Characterization of smooth muscle cell and pericyte differentiation in the rat retina in vivo. , 2004, Investigative ophthalmology & visual science.

[254]  E. Friedman,et al.  Choroidal blood flow. 3. Effects of oxygen and carbon dioxide. , 1972, Archives of ophthalmology.

[255]  G. Feke Laser Doppler instrumentation for the measurement of retinal blood flow: theory and practice. , 2006, Bulletin de la Societe belge d'ophtalmologie.

[256]  H. Lester,et al.  Genetic Inactivation of an Inwardly Rectifying Potassium Channel (Kir4.1 Subunit) in Mice: Phenotypic Impact in Retina , 2000, The Journal of Neuroscience.

[257]  L Guo,et al.  Alzheimer's disease and retinal neurodegeneration. , 2009, Current Alzheimer research.

[258]  R. Johnson,et al.  Astrocyte hypoxic response is essential for pathological but not developmental angiogenesis of the retina , 2010, Glia.

[259]  J. Provis,et al.  Endothelial cell proliferation in the choriocapillaris during human retinal differentiation , 2006, British Journal of Ophthalmology.

[260]  J. Provis,et al.  Astrocyte proliferation during development of the human retinal vasculature. , 1999, Experimental eye research.

[261]  C. Riva,et al.  Retinal circulation during a spontaneous rise of intraocular pressure. , 1988, The British journal of ophthalmology.

[262]  M. Chun,et al.  Apoptotic death of photoreceptors in the streptozotocin-induced diabetic rat retina , 2003, Diabetologia.

[263]  S. Cringle,et al.  PO2 profiles and oxygen consumption in cat retina with an occluded retinal circulation. , 1990, Investigative ophthalmology & visual science.

[264]  B. Petrig,et al.  Retinal blood flow autoregulation in response to an acute increase in blood pressure. , 1986, Investigative ophthalmology & visual science.

[265]  M. Nelson,et al.  Extracellular K(+)‐induced hyperpolarizations and dilatations of rat coronary and cerebral arteries involve inward rectifier K(+) channels. , 1996, The Journal of physiology.

[266]  Bernd Biedermann,et al.  Kir potassium channel subunit expression in retinal glial cells: Implications for spatial potassium buffering † , 2002, Glia.

[267]  R. Klein,et al.  Retinal vascular caliber, cardiovascular risk factors, and inflammation: the multi-ethnic study of atherosclerosis (MESA). , 2006, Investigative ophthalmology & visual science.

[268]  G. Neufeld,et al.  Vascular endothelial growth factor (VEGF) and its receptors , 1999, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[269]  Oliver Findl,et al.  Topical fundus pulsation measurements in age-related macular degeneration , 1998, Graefe's Archive for Clinical and Experimental Ophthalmology.

[270]  J. Provis,et al.  Angiogenesis in normal human retinal development the involvement of astrocytes and macrophages , 2004, Graefe's Archive for Clinical and Experimental Ophthalmology.

[271]  T. Curtis,et al.  Substrates modified by advanced glycation end-products cause dysfunction and death in retinal pericytes by reducing survival signals mediated by platelet-derived growth factor , 2004, Diabetologia.

[272]  M. Wolzt,et al.  Effect of dual endothelin receptor blockade on ocular blood flow in patients with glaucoma and healthy subjects , 2008, BMC Pharmacology.

[273]  A. Alm,et al.  The oxygen supply to the retina. I. Effects of changes in intraocular and arterial blood pressures, and in arterial P O2 and P CO2 on the oxygen tension in the vitreous body of the cat. , 1972, Acta physiologica Scandinavica.

[274]  E. Piek,et al.  Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival. , 2003, Developmental biology.

[275]  J. Flanagan,et al.  Retinal arteriolar and capillary vascular reactivity in response to isoxic hypercapnia. , 2008, Experimental eye research.

[276]  T. Kraft,et al.  Oscillatory potential analysis and ERGs of normal and diabetic rats. , 2004, Investigative ophthalmology & visual science.

[277]  J Seddon,et al.  Increased scleral rigidity and age-related macular degeneration. , 1989, Ophthalmology.

[278]  Leopold Schmetterer,et al.  A comparison between laser interferometric measurement of fundus pulsation and pneumotonometric measurement of pulsatile ocular blood flow 1. Baseline considerations , 2000, Eye.

[279]  J. Lovasik,et al.  Blue flicker modifies the subfoveal choroidal blood flow in the human eye. , 2005, American journal of physiology. Heart and circulatory physiology.

[280]  T. Chan-Ling Glial, neuronal and vascular interactions in the mammalian retina , 1994, Progress in Retinal and Eye Research.

[281]  C E Riva,et al.  Total retinal volumetric blood flow rate in diabetic patients with poor glycemic control. , 1992, Investigative ophthalmology & visual science.

[282]  Fatmire Berisha,et al.  Retinal abnormalities in early Alzheimer's disease. , 2007, Investigative ophthalmology & visual science.

[283]  Ingeborg Stalmans,et al.  Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. , 2002, The Journal of clinical investigation.

[284]  Marcus Fruttiger,et al.  Astrocyte-Derived Vascular Endothelial Growth Factor Stabilizes Vessels in the Developing Retinal Vasculature , 2010, PloS one.

[285]  D. Schweitzer,et al.  Retinal venous oxygen saturation increases by flicker light stimulation. , 2011, Investigative ophthalmology & visual science.

[286]  Eric A Newman,et al.  Calcium Increases in Retinal Glial Cells Evoked by Light-Induced Neuronal Activity , 2005, The Journal of Neuroscience.

[287]  T. Chan-Ling,et al.  Altered pericyte–endothelial relations in the rat retina during aging: Implications for vessel stability , 2006, Neurobiology of Aging.

[288]  C. Akkın,et al.  Color Doppler Imaging of Choroidal Circulation in Patients with Asymmetric Age-Related Macular Degeneration , 2003, Ophthalmologica.

[289]  T. Kern,et al.  Galactose-induced retinal microangiopathy in rats. , 1995, Investigative ophthalmology & visual science.

[290]  B. Petrig,et al.  Effect of acute decreases of perfusion pressure on choroidal blood flow in humans. , 1997, Investigative ophthalmology & visual science.

[291]  B L Petrig,et al.  Near-IR retinal laser Doppler velocimetry and flowmetry: new delivery and detection techniques. , 1991, Applied optics.

[292]  S. Cranstoun,et al.  Local choroidal blood flow in the cat by laser Doppler flowmetry. , 1994, Investigative ophthalmology & visual science.

[293]  S. Sheikpranbabu,et al.  Pigment epithelium–derived factor down regulates hyperglycemia-induced apoptosis via PI3K/Akt activation in goat retinal pericytes , 2009, Angiogenesis.

[294]  E. Lütjen-Drecoll,et al.  Pathophysiologic changes in the optic nerves of eyes with primary open angle and pseudoexfoliation glaucoma. , 2005, Investigative ophthalmology & visual science.

[295]  M. Koss,et al.  Choroidal and ciliary body blood flow analysis: application of laser Doppler flowmetry in experimental animals. , 1991, Experimental eye research.

[296]  W. T. Ham,et al.  The relative absorption of thermal energy in retina and choroid. , 1962, Investigative ophthalmology.

[297]  Ulrich Dirnagl,et al.  Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain , 2010, Proceedings of the National Academy of Sciences.

[298]  E. Newman,et al.  Light-evoked increases in extracellular K+ in the plexiform layers of amphibian retinas , 1985, The Journal of general physiology.

[299]  D. Puro Physiology and Pathobiology of the Pericyte‐Containing Retinal Microvasculature: New Developments , 2007, Microcirculation.

[300]  G. Ying,et al.  Reduced foveolar choroidal blood flow in eyes with increasing AMD severity. , 2005, Investigative ophthalmology & visual science.

[301]  Andreas Wenzel,et al.  In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy , 2005, Vision Research.

[302]  C. Scholfield,et al.  Ca2+-activated Cl- current in retinal arteriolar smooth muscle. , 2009, Investigative ophthalmology & visual science.

[303]  D. R. Anderson,et al.  Relaxation of retinal pericyte contractile tone through the nitric oxide-cyclic guanosine monophosphate pathway. , 1994, Investigative ophthalmology & visual science.

[304]  D. Cogan,et al.  The mural cell in perspective. , 1967, Archives of ophthalmology.

[305]  Joseph C. Besharse,et al.  Encyclopedia of the eye , 2010 .

[306]  R. Farrell,et al.  Validity of pulsatile ocular blood flow measurements. , 1994, Survey of ophthalmology.

[307]  L. Schmetterer,et al.  Response of choroidal blood flow in the foveal region to hyperoxia and hyperoxia-hypercapnia. , 2000, Current eye research.

[308]  T. Curtis,et al.  Ca2+-sparks constitute elementary building blocks for global Ca2+-signals in myocytes of retinal arterioles , 2007, Cell calcium.

[309]  T. Chan-Ling,et al.  In vivo characterization of astrocyte precursor cells (APCs) and astrocytes in developing rat retinae: Differentiation, proliferation, and apoptosis , 2009, Glia.

[310]  A. Bill Intraocular pressure and blood flow through the uvea. , 1962, Archives of ophthalmology.

[311]  Grant R. Gordon,et al.  Brain metabolism dictates the polarity of astrocyte control over arterioles , 2008, Nature.

[312]  D. Attwell,et al.  Bidirectional control of CNS capillary diameter by pericytes , 2006, Nature.

[313]  Lois E. H. Smith,et al.  Retinal Vascular Development , 2007 .

[314]  L. Schmetterer,et al.  Unilateral light–dark transitions affect choroidal blood flow in both eyes , 2001, Vision Research.

[315]  N. Standen,et al.  Ryanodine receptors regulate arterial diameter and wall [Ca2+] in cerebral arteries of rat via Ca2+‐dependent K+ channels , 1998, The Journal of physiology.

[316]  T. Chan-Ling,et al.  Role of CD44+ stem cells in mural cell formation in the human choroid: evidence of vascular instability due to limited pericyte ensheathment. , 2011, Investigative ophthalmology & visual science.

[317]  S. Orgül,et al.  Measurement procedures in confocal choroidal laser Doppler flowmetry , 2004, Current eye research.

[318]  M. Wolzt,et al.  Retinal blood flow during hyperoxia in humans revisited: concerted results using different measurement techniques. , 2002, Microvascular research.

[319]  D. R. Anderson,et al.  Contractile responses of cultured bovine retinal pericytes to angiotensin II. , 1997, Archives of ophthalmology.

[320]  Benedetto Falsini,et al.  Flicker-evoked changes in human optic nerve blood flow: relationship with retinal neural activity. , 2002, Investigative ophthalmology & visual science.

[321]  D. Attwell,et al.  Pericyte-Mediated Regulation of Capillary Diameter: A Component of Neurovascular Coupling in Health and Disease , 2010, Front. Neuroenerg..

[322]  T. Gardner,et al.  Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. The Penn State Retina Research Group. , 2000, Investigative ophthalmology & visual science.

[323]  Asaad A. Ghanem,et al.  Endothelin-1 and Nitric Oxide Levels in Patients with Glaucoma , 2011, Ophthalmic Research.

[324]  H. Hammes,et al.  Pericyte Migration , 2008, Diabetes.

[325]  Ching-Yu Cheng,et al.  Pulsatile ocular blood flow in asymmetric exudative age related macular degeneration , 2001, The British journal of ophthalmology.

[326]  L. Kagemann,et al.  Choroidal perfusion perturbations in non-neovascular age related macular degeneration , 2002, The British journal of ophthalmology.

[327]  W. Vilser,et al.  Retinal vessel reaction in response to chromatic flickering light , 2004, Graefe's Archive for Clinical and Experimental Ophthalmology.

[328]  K. Hongo,et al.  Mechanism of Extracellular K+-Induced Local and Conducted Responses in Cerebral Penetrating Arterioles , 2002, Stroke.

[329]  J. Flammer,et al.  Autoregulation, a balancing act between supply and demand. , 2008, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[330]  C. Stehouwer,et al.  Overexpression of Glyoxalase-I Reduces Hyperglycemia-induced Levels of Advanced Glycation End Products and Oxidative Stress in Diabetic Rats* , 2010, The Journal of Biological Chemistry.

[331]  P. Henkind,et al.  Radial peripapillary capillaries of the retina. I. Anatomy: human and comparative. , 1967, The British journal of ophthalmology.

[332]  Christiana Ruhrberg,et al.  Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. , 2010, Blood.

[333]  Paul Mitchell,et al.  Retinal Arteriolar Narrowing Predicts Incidence of Diabetes , 2008, Diabetes.

[334]  E. Mufson,et al.  Beta-amyloid deposition and functional impairment in the retina of the APPswe/PS1DeltaE9 transgenic mouse model of Alzheimer's disease. , 2009, Investigative ophthalmology & visual science.

[335]  E. Vicaut,et al.  Evaluation of retinal function and flicker light-induced retinal vascular response in normotensive patients with diabetes without retinopathy. , 2011, Investigative ophthalmology & visual science.

[336]  M. Koss,et al.  Sympathetic vasoconstriction in the rat anterior choroid is mediated by alpha1-adrenoceptors. , 1998, European journal of pharmacology.

[337]  E. Friedman Choroidal blood flow. Pressure-flow relationships. , 1970, Archives of ophthalmology.

[338]  Haiying Cheng,et al.  Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging. , 2007, Optics letters.

[339]  U. Landegren,et al.  Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. , 2003, Genes & development.

[340]  C. Betsholtz,et al.  Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. , 2011, Developmental cell.

[341]  C. Delaey,et al.  Pressure-induced myogenic responses in isolated bovine retinal arteries. , 2000, Investigative ophthalmology & visual science.

[342]  J. C. de la Torre Cerebrovascular and cardiovascular pathology in Alzheimer's disease. , 2009, International review of neurobiology.

[343]  E. Newman Regional Specialization of the Membrane of Retinal Glial Cells and Its Importance to K+ Spatial Buffering a , 1986, Annals of the New York Academy of Sciences.

[344]  L. Schmetterer,et al.  Regulation of choroidal blood flow during combined changes in intraocular pressure and arterial blood pressure. , 2007, Investigative ophthalmology & visual science.

[345]  J. Weiter,et al.  Response of human retinal blood flow to light and dark. , 1983, Investigative ophthalmology & visual science.

[346]  H. Chertkow,et al.  Neuroretinal function is normal in early dementia of the Alzheimer type , 2001, Neurobiology of Aging.

[347]  G. Ruskell Peripapillary venous drainage from the choroid: a variable feature in human eyes , 1997, The British journal of ophthalmology.

[348]  D. Puro,et al.  The electrotonic architecture of the retinal microvasculature: modulation by angiotensin II , 2011, The Journal of physiology.

[349]  A L Kornzweig,et al.  Selective atrophy of the radial peripapillary capillaries in chronic glaucoma. , 1968, Archives of ophthalmology.

[350]  E. Newman,et al.  Aminoguanidine Reverses the Loss of Functional Hyperemia in a Rat Model of Diabetic Retinopathy , 2011, Front. Neuroenerg..

[351]  Charles E. Riva,et al.  Visually evoked hemodynamical response and assessment of neurovascular coupling in the optic nerve and retina , 2005, Progress in Retinal and Eye Research.

[352]  V. Parisi Correlation between morphological and functional retinal impairment in patients affected by ocular hypertension, glaucoma, demyelinating optic neuritis and Alzheimer’s disease , 2003, Seminars in ophthalmology.

[353]  R P Danis,et al.  Color Doppler imaging discloses reduced ocular blood flow velocities in nonexudative age-related macular degeneration. , 1999, American journal of ophthalmology.

[354]  M. C. Angulo,et al.  Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation , 2003, Nature Neuroscience.

[355]  R. Gariano Cellular mechanisms in retinal vascular development , 2003, Progress in Retinal and Eye Research.

[356]  M. F. Armaly,et al.  Effect of ocular pressure on choroidal circulation in the cat and Rhesus monkey. , 1975, Investigative ophthalmology.

[357]  R. Kawasaki,et al.  Retinal vessel calibre and micro- and macrovascular complications in type 1 diabetes , 2009, Diabetologia.

[358]  W. Bayliss On the local reactions of the arterial wall to changes of internal pressure , 1902, The Journal of physiology.

[359]  N. Laver,et al.  Diabetes-related histopathologies of the rat retina prevented with an aldose reductase inhibitor. , 1990, Experimental eye research.

[360]  B. Petrig,et al.  Choroidal blood flow during isometric exercises. , 1997, Investigative ophthalmology & visual science.

[361]  J. Stone,et al.  Development of retinal vasculature in the cat: processes and mechanisms. , 1990, Current eye research.

[362]  T. Kudo,et al.  Reduced retinal function in amyloid precursor protein‐over‐expressing transgenic mice via attenuating glutamate‐N‐methyl‐d‐aspartate receptor signaling , 2008, Journal of neurochemistry.

[363]  O Findl,et al.  Evaluation of the Zeiss retinal vessel analyser , 2000, The British journal of ophthalmology.

[364]  E. Ling,et al.  Neuronal and microglial response in the retina of streptozotocin-induced diabetic rats , 2000, Visual Neuroscience.

[365]  J. Stone,et al.  Structure of the macroglia of the retina: Sharing and division of labour between astrocytes and Müller cells , 1991, The Journal of comparative neurology.

[366]  T. Chan-Ling,et al.  Desmin ensheathment ratio as an indicator of vessel stability: evidence in normal development and in retinopathy of prematurity. , 2004, The American journal of pathology.

[367]  C. Scholfield,et al.  Heterogeneity in cytosolic calcium regulation among different microvascular smooth muscle cells of the rat retina. , 2000, Microvascular research.

[368]  V. Arshavsky,et al.  Progress in Retinal and Eye Research , 2008 .

[369]  M. Mancini,et al.  Pericyte coverage is greater in the retinal than in the cerebral capillaries of the rat. , 1987, Investigative ophthalmology & visual science.

[370]  T. Gardiner,et al.  Endothelium-derived agents in Pericyte function/dysfunction , 1999, Progress in Retinal and Eye Research.

[371]  Timothy S Kern,et al.  Activation of nuclear factor-kappaB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes. , 2002, Diabetes.

[372]  T. Chan-Ling,et al.  Vascularization of the human fetal retina: roles of vasculogenesis and angiogenesis. , 2000, Investigative ophthalmology & visual science.

[373]  R. Kalaria,et al.  Increased collagen content of cerebral microvessels in Alzheimer's disease , 1995, Brain Research.

[374]  C. Scholfield,et al.  Kv1.5 is a major component underlying the A-type potassium current in retinal arteriolar smooth muscle , 2006, American journal of physiology. Heart and circulatory physiology.

[375]  Dao-Yi Yu,et al.  Model of endothelin-1-induced chronic optic neuropathy in rat. , 2004, Investigative ophthalmology & visual science.

[376]  E. Unanue,et al.  Activated macrophages induce vascular proliferation , 1977, Nature.

[377]  K. Alitalo,et al.  VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia , 2003, The Journal of cell biology.

[378]  Z. Dreher,et al.  Müller cell endfeet at the inner surface of the retina: light microscopy , 1988, Visual Neuroscience.

[379]  P. Henkind,et al.  Retinal arteriolar annuli. , 1968, Investigative ophthalmology.

[380]  C. Riva,et al.  Subfoveal choroidal blood flow in response to light-dark exposure. , 2000, Investigative ophthalmology & visual science.

[381]  Alan W. Stitt,et al.  AGEs, RAGE, and Diabetic Retinopathy , 2011, Current diabetes reports.

[382]  Charles E. Riva,et al.  Fundus camera based retinal LDV. , 1981, Applied optics.

[383]  L. Kuo,et al.  Dilation of retinal arterioles in response to lactate: role of nitric oxide, guanylyl cyclase, and ATP-sensitive potassium channels. , 2006, Investigative ophthalmology & visual science.

[384]  J. Duker,et al.  In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography. , 2006, Optics letters.

[385]  J. Kiel,et al.  The effect of vasopressin on choroidal blood flow, intraocular pressure, and orbital venous pressure in rabbits. , 2011, Investigative ophthalmology & visual science.

[386]  E. Salathe,et al.  Biomechanics of ocular pneumoplethysmography. , 1993, Journal of biomechanical engineering.

[387]  Anders M. Dale,et al.  Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation , 2007, NeuroImage.