Approximating Digital 3D Shapes by Rational Gaussian Surfaces

A method for approximating spherical topology digital shapes by rational Gaussian (RaG) surfaces is presented. Points in a shape are parametrized by approximating the shape with a triangular mesh, determining parameter coordinates at mesh vertices, and finding parameter coordinates at shape points from interpolation of parameter coordinates at mesh vertices. Knowing the locations and parameter coordinates of the shape points, the control points of a RaG surface are determined to approximate the shape with a required accuracy. The process starts from a small set of control points and gradually increases the control points until the error between the surface and the digital shape reduces to a required tolerance. Both triangulation and surface approximation proceed from coarse to fine. Therefore, the method is particularly suitable for multiresolution creation and transmission of digital shapes over the Internet. Application of the proposed method in editing of 3D shapes is demonstrated.

[1]  Gerald Farin,et al.  Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..

[2]  David P. Dobkin,et al.  MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.

[3]  Anath Fischer,et al.  Parameterization and Reconstruction from 3D Scattered Points Based on Neural Network and PDE Techniques , 2001, IEEE Trans. Vis. Comput. Graph..

[4]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[5]  William E. Lorensen,et al.  Marching cubes: a high resolution 3D surface construction algorithm , 1996 .

[6]  J. A. Gregory,et al.  A C1 triangular interpolation patch for computer-aided geometric design , 1980 .

[7]  Tony DeRose,et al.  Generalized B-spline surfaces of arbitrary topology , 1990, SIGGRAPH.

[8]  Peter Schröder,et al.  Interactive multiresolution mesh editing , 1997, SIGGRAPH.

[9]  Dimitris N. Metaxas,et al.  Dynamic 3D Models with Local and Global Deformations: Deformable Superquadrics , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Jayaram K. Udupa,et al.  Scale-Based Fuzzy Connected Image Segmentation: Theory, Algorithms, and Validation , 2000, Comput. Vis. Image Underst..

[11]  Richard K. Beatson,et al.  Reconstruction and representation of 3D objects with radial basis functions , 2001, SIGGRAPH.

[12]  Peter Schröder,et al.  Normal meshes , 2000, SIGGRAPH.

[13]  Laurent D. Cohen,et al.  A Hybrid Hyperquadric Model for 2-D and 3-D Data Fitting , 1996, Comput. Vis. Image Underst..

[14]  Demetri Terzopoulos,et al.  A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis. , 1995, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[15]  James F. O'Brien,et al.  Shape transformation using variational implicit functions , 1999, SIGGRAPH 1999.

[16]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[17]  Martin Reimers,et al.  Meshless parameterization and surface reconstruction , 2001, Comput. Aided Geom. Des..

[18]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[19]  Joan Serrat,et al.  Multilocal Creaseness Based on the Level-Set Extrinsic Curvature , 2000, Comput. Vis. Image Underst..

[20]  Benjamin B. Kimia,et al.  Volumetric Segmentation of Medical Images by Three-Dimensional Bubbles , 1997, Comput. Vis. Image Underst..

[21]  Guido Gerig,et al.  Parametrization of Closed Surfaces for 3-D Shape Description , 1995, Comput. Vis. Image Underst..

[22]  Alex Pentland,et al.  Automatic extraction of deformable part models , 1990, International Journal of Computer Vision.

[23]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[24]  James S. Duncan,et al.  Model-based deformable surface finding for medical images , 1996, IEEE Trans. Medical Imaging.

[25]  J. M. Galvez,et al.  Normalization and shape recognition of three-dimensional objects by 3D moments , 1993, Pattern Recognit..

[26]  A. Ardeshir Goshtasby,et al.  Design and recovery of 2-D and 3-D shapes using rational Gaussian curves and surfaces , 1993, International Journal of Computer 11263on.

[27]  L O Hall,et al.  Review of MR image segmentation techniques using pattern recognition. , 1993, Medical physics.

[28]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[29]  A. Ardeshir Goshtasby,et al.  Geometric modelling using rational Gaussian curves and surfaces , 1995, Comput. Aided Des..

[30]  Tony DeRose,et al.  Multiresolution analysis for surfaces of arbitrary topological type , 1997, TOGS.

[31]  David E. Breen,et al.  Semi-regular mesh extraction from volumes , 2000 .

[32]  Hugues Hoppe,et al.  Efficient implementation of progressive meshes , 1998, Comput. Graph..

[33]  James F. O'Brien,et al.  Variational Implicit Surfaces , 1999 .

[34]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[35]  David Levin,et al.  Progressive Compression of Arbitrary Triangular Meshes , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[36]  Andrew J. Hanson,et al.  Hyperquadrics: Smoothly deformable shapes with convex polyhedral bounds , 1988, Comput. Vis. Graph. Image Process..

[37]  James S. Duncan,et al.  Deformable Fourier models for surface finding in 3-D images , 1992, Other Conferences.

[38]  Hong Qin,et al.  Triangular NURBS and their dynamic generalizations , 1997, Comput. Aided Geom. Des..

[39]  Laurent D. Cohen,et al.  A Parametric Deformable Model to Fit Unstructured 3D Data , 1998, Comput. Vis. Image Underst..

[40]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[41]  S P Raya,et al.  Low-level segmentation of 3-D magnetic resonance brain images-a rule-based system. , 1990, IEEE transactions on medical imaging.

[42]  Renato Pajarola,et al.  Compressed Progressive Meshes , 2000, IEEE Trans. Vis. Comput. Graph..

[43]  A. Ardeshir Goshtasby,et al.  Matching of tomographic slices for interpolation , 1992, IEEE Trans. Medical Imaging.

[44]  Hans-Peter Seidel,et al.  A Shrink Wrapping Approach to Remeshing Polygonal Surfaces , 1999, Comput. Graph. Forum.

[45]  Hugues Hoppe,et al.  Displaced subdivision surfaces , 2000, SIGGRAPH.

[46]  Milan Sonka,et al.  Directional 3D Edge Detection in Anisotropic Data: Detector Design and Performance Assessment , 2000, Comput. Vis. Image Underst..

[47]  Ruzena Bajcsy,et al.  Recovery of Parametric Models from Range Images: The Case for Superquadrics with Global Deformations , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  U Tiede,et al.  3-D segmentation of MR images of the head for 3-D display. , 1990, IEEE transactions on medical imaging.

[49]  Andrei Khodakovsky,et al.  Progressive geometry compression , 2000, SIGGRAPH.