On integer programing with restricted determinants

Let $A$ be an $(m \times n)$ integral matrix of the rank $n$ and let $P=\{ x : A x \leq b\}$ be $n$-dimensional polytope. Width of $P$ is defined as $ w(P)=min\{max_P x^Tu - min_P x^Tv:\ x\in \mathbb{Z}^n\setminus\{0\} \}$. Let $\Delta$ denote the smallest absolute value of the determinant among basis matrices of $A$. We prove that if every basis matrix of $A$ has determinant equal to $\pm \Delta$ and $w(P)\ge (\Delta-1)(n+1)$, then $P$ contains a lattice $n$ - dimensional simplex. When $P$ is a simplex and $w(P)\ge \Delta-1$ we describe the polynomial time algorithm for finding an integer point in $P$.

[1]  Analysis of the impact of the number of edges in connected graphs on the computational complexity of the independent set problem , 2012 .

[2]  L. Lovász,et al.  Covering minima and lattice-point-free convex bodies , 1988 .

[3]  Gérard Cornuéjols,et al.  On Padberg's conjecture about almost totally unimodular matrices , 2000, Oper. Res. Lett..

[4]  Hamdy A. Taha The Asymptotic Integer Algorithm , 1975 .

[6]  Irwin E. Schochetman,et al.  On the minors of an incidence matrix and its Smith normal form , 1995 .

[7]  Wojciech Banaszczyk,et al.  Inequalities for convex bodies and polar reciprocal lattices inRn II: Application ofK-convexity , 1996, Discret. Comput. Geom..

[8]  Valery Shevchenko Qualitative Topics in Integer Linear Programming , 1996 .

[9]  G. Ziegler Lectures on Polytopes , 1994 .

[10]  Alexander E. Litvak,et al.  The Flatness Theorem for Nonsymmetric Convex Bodies via the Local Theory of Banach Spaces , 1999, Math. Oper. Res..

[11]  S. Vajda,et al.  Integer Programming and Network Flows , 1970 .

[12]  Günter M. Ziegler,et al.  On the Maximal Width of Empty Lattice Simplices , 2000, Eur. J. Comb..

[13]  D. Gribanov The Flatness Theorem for Some Class of Polytopes and Searching an Integer Point , 2014 .

[14]  Vadim V. Lozin,et al.  Boundary properties of graphs for algorithmic graph problems , 2011, Theor. Comput. Sci..

[15]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[16]  R E Gomory,et al.  ON THE RELATION BETWEEN INTEGER AND NONINTEGER SOLUTIONS TO LINEAR PROGRAMS. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Sergey I. Veselov,et al.  Integer program with bimodular matrix , 2008, Discret. Optim..

[18]  Jean-Michel Kantor On the Width of Lattice-Free simplices , 1997 .

[19]  András Sebö,et al.  An Introduction to Empty Lattice Simplices , 1999, IPCO.

[20]  W. Banaszczyk New bounds in some transference theorems in the geometry of numbers , 1993 .

[21]  M. Rudelson Distances Between Non-symmetric Convex Bodies and the $$MM^* $$ -estimate , 1998, math/9812010.

[22]  D. Malyshev,et al.  Classes of graphs critical for the edge list-ranking problem , 2014, Journal of Applied and Industrial Mathematics.

[23]  R. Gomory Some polyhedra related to combinatorial problems , 1969 .

[24]  Manfred W. Padberg,et al.  The boolean quadric polytope: Some characteristics, facets and relatives , 1989, Math. Program..

[25]  David K. Smith Theory of Linear and Integer Programming , 1987 .