Continuous-time non-linear flatness-based predictive control: an exact feedforward linearisation setting with an induction drive example

A general flatness-based framework for non-linear continuous-time predictive control is presented. It extends the results of Fliess and Marquez (2000) to the non-linear case. The mathematical setting, which is valid for multivariable systems, is provided by the theory of flatness-based exact feedforward linearisation introduced by the authors (Hagenmeyer and Delaleau 2003b). Thereby differential flatness does not only yield an easy calculation of the predicted trajectories considering the respective system constraints, but allows to use simple linear feedback parts in a two-degree-of-freedom control structure. Moreover, this formalism permits one to handle non-minimum phase systems, and furthermore to deal with parameter uncertainties and exogenous perturbations. Respective robustness analysis tools are available. Finally, an induction drive example is discussed in detail and experimental results for this fast electro-mechanical system are presented.

[1]  Veit Hagenmeyer Robust Nonlinear Tracking Control Based on Differential Flatness , 2002 .

[2]  M. Fliess,et al.  Regulation of non-minimum phase outputs: a flatness based approach , 1998 .

[3]  Philippe Martin,et al.  TWO REMARKS ON INDUCTION MOTORS , 2005 .

[4]  S. Joe Qin,et al.  An Overview of Nonlinear Model Predictive Control Applications , 2000 .

[5]  Frank Allgöwer,et al.  An Introduction to Nonlinear Model Predictive Control , 2002 .

[6]  Michel Fliess,et al.  A flatness based control synthesis of linear systems and application to windshield wipers , 1997, 1997 European Control Conference (ECC).

[7]  Ralf Rothfuß,et al.  Flatness based control of a nonlinear chemical reactor model , 1996, Autom..

[8]  B. Bulut,et al.  Industrial Application of Model Based Predictive Control , 2000 .

[9]  Joachim Rudolph Une forme canonique en bouclage quasi statique , 1993 .

[10]  Veit Hagenmeyer,et al.  Flatness-based control of the separately excited DC drive , 2001 .

[11]  I. Horowitz Synthesis of feedback systems , 1963 .

[12]  V. Wertz,et al.  Adaptive Optimal Control: The Thinking Man's G.P.C. , 1991 .

[13]  Emmanuel Delaleau,et al.  Commande prédictive non linéaire fondée sur la platitude du moteur à induction : Application au positionnement de précision , 2002 .

[14]  Thomas Devos,et al.  A flatness-based nonlinear predictive approach for crane control , 2006 .

[15]  J. Rudolph,et al.  Control of flat systems by quasi-static feedback of generalized states , 1998 .

[16]  J. Richalet,et al.  Model predictive heuristic control: Applications to industrial processes , 1978, Autom..

[17]  O. Wasynczuk,et al.  Electromechanical Motion Devices , 1989 .

[18]  A.M. Stankovic,et al.  Flatness-based hierarchical control of the PM synchronous motor , 2004, Proceedings of the 2004 American Control Conference.

[19]  Jean Lévine,et al.  A nonlinear approach to the control of magnetic bearings , 1996, IEEE Trans. Control. Syst. Technol..

[20]  Michel Fliess,et al.  Generalized controller canonical form for linear and nonlinear dynamics , 1990 .

[21]  T. A. Badgwell,et al.  An Overview of Industrial Model Predictive Control Technology , 1997 .

[22]  Edwin Hewitt,et al.  Foundations of Modern Analysis (vol. X of Pure and Applied Mathematics). , 1961 .

[23]  M. Fliess Automatique et corps différentiels , 1989 .

[24]  Ronald Soeterboek,et al.  Predictive Control: A Unified Approach , 1992 .

[25]  M. B. Zarrop,et al.  Book Review: Adaptive Optimal Control: the thinking man's GPC , 1991 .

[26]  M. Fliess,et al.  Continuous-time linear predictive control and flatness: A module-theoretic setting with examples , 2000 .

[27]  M. Fliess,et al.  Sur les systèmes non linéaires différentiellement plats , 1992 .

[28]  J. Lévine,et al.  Are there New Industrial Perspectives in the Control of Mechanical Systems , 1999 .

[29]  Jacques Richalet,et al.  La commande prédictive , 1998 .

[30]  Richard M. Murray,et al.  Flat systems, equivalence and feedback , 2001 .

[31]  Didier Dumur,et al.  Nonlinear predictive control of current-fed induction motor based on differential flatness properties , 1999, 1999 European Control Conference (ECC).

[32]  Veit Hagenmeyer,et al.  Flatness-based control of the induction drive minimising energy dissipation , 2003 .

[33]  Francis J. Doyle,et al.  Differential flatness based nonlinear predictive control of fed-batch bioreactors , 2001 .

[34]  V. Hagenmeyer,et al.  Exact feedforward linearization based on differential flatness , 2003 .

[35]  Veit Hagenmeyer,et al.  Flatness-based two-degree-of-freedom control of industrial semi-batch reactors using a new observation model for an extended Kalman filter approach , 2008, Int. J. Control.

[36]  Joachim Rudolph,et al.  Well-formed dynamics under quasi-static state feedback , 1995 .

[37]  Veit Hagenmeyer,et al.  Internal dynamics of flat nonlinear SISO systems with respect to a non-flat output , 2004, Syst. Control. Lett..

[38]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[39]  Ralf Rothfuß Anwendung der flachheitsbasierten Analyse und Regelung nichtlinearer Mehrgrößensysteme , 1997 .

[40]  Veit Hagenmeyer,et al.  Exact feedforward linearisation based on differential flatness: The SISO case , 2003 .

[41]  Werner Leonhard,et al.  Control of Electrical Drives , 1990 .

[42]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[43]  C. R. Cutler,et al.  Dynamic matrix control¿A computer control algorithm , 1979 .

[44]  Romeo Ortega,et al.  Modeling and Control of Induction Motors , 2001 .

[45]  Franck Cazaurang COMMANDE ROBUSTE DES SYSTÈMES PLATS APPLICATION À LA COMMANDE D' UNE MACHINE SYNCHRONE. , 1997 .

[46]  Veit Hagenmeyer,et al.  Robustness Analysis With Respect to Exogenous Perturbations for Flatness-Based Exact Feedforward Linearization , 2010, IEEE Transactions on Automatic Control.

[47]  M. Fliess Some basic structural properties of generalized linear systems , 1991 .

[48]  Veit Hagenmeyer,et al.  Comparative evaluation of nonlinear model predictive and flatness-based two-degree-of-freedom control design in view of industrial application , 2007 .

[49]  J. Richalet,et al.  Industrial applications of model based predictive control , 1993, Autom..

[50]  David W. Clarke,et al.  Generalized predictive control - Part I. The basic algorithm , 1987, Autom..

[51]  Veit Hagenmeyer,et al.  Robustness analysis of exact feedforward linearization based on differential flatness , 2003, Autom..

[52]  W. Rugh,et al.  On a stability theorem for nonlinear systems with slowly varying inputs , 1990 .

[53]  M. Kelemen A stability property , 1986 .

[54]  Jay H. Lee,et al.  Model predictive control: past, present and future , 1999 .

[55]  Joachim Rudolph,et al.  Flatness-based control of nonlinear delay systems: A chemical reactor example , 1998 .

[56]  Philippe Martin,et al.  A Lie-Backlund approach to equivalence and flatness of nonlinear systems , 1999, IEEE Trans. Autom. Control..

[57]  P. Rouchon,et al.  Differential flatness and control of induction motors , 1996 .

[58]  P. Kokotovic,et al.  On stability properties of nonlinear systems with slowly varying inputs , 1991 .

[59]  Wolfgang Marquardt,et al.  Flatness and higher order differential model representations in dynamic optimization , 2002 .

[60]  P. Rouchon,et al.  On the control of US Navy cranes , 1997, 1997 European Control Conference (ECC).

[61]  Sunil K. Agrawal,et al.  Differentially Flat Systems , 2004 .

[62]  Marquez Contreras,et al.  A propos de quelques methodes classiques de commande lineaire : commande predictive, correcteurs proportionnels-integraux, predicteurs de smith , 2001 .

[63]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..