Two-Level Newton and Hybrid Schwarz Preconditioners for Fluid-Structure Interaction

We introduce and study numerically a two-level Schwarz preconditioner for Newton-Krylov methods for fluid-structure interaction, with special consideration of the application area of simulating blood flow. Our approach monolithically couples the fluid to the structure on both fine and coarse grids and in the subdomain solves, insuring that there is multiphysics coupling during all aspects of the algorithm. The fluid-structure system is discretized on unstructured nonnested meshes, with an overlapping additive domain decomposition on both coarse and fine levels and multiplicative Schwarz preconditioning between levels. We investigate the effect of different coarse discretization sizes, solver stopping criteria, and overlap size, and we demonstrate that the method is robust to physical parameters including the structure's Young's modulus and the timestep size. Finally, we show effective preconditioning of the complicated coupled system, with nearly perfect weak scaling to a thousand processors and millions of unknowns.

[1]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[2]  Charles Taylor,et al.  EXPERIMENTAL AND COMPUTATIONAL METHODS IN CARDIOVASCULAR FLUID MECHANICS , 2004 .

[3]  Annalisa Quaini,et al.  Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect , 2008 .

[4]  Jing Li,et al.  A Dual-Primal FETI method for incompressible Stokes equations , 2005, Numerische Mathematik.

[5]  Olof B. Widlund,et al.  An Overlapping Schwarz Algorithm for Almost Incompressible Elasticity , 2009, SIAM J. Numer. Anal..

[6]  Xiao-Chuan Cai,et al.  A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[7]  D. Dinkler,et al.  A monolithic approach to fluid–structure interaction using space–time finite elements , 2004 .

[8]  A. M. Winslow Adaptive-mesh zoning by the equipotential method , 1981 .

[9]  Paul Fischer,et al.  An Overlapping Schwarz Method for Spectral Element Solution of the Incompressible Navier-Stokes Equations , 1997 .

[10]  L. Pavarino Indefinite overlapping Schwarz methods for time-dependent Stokes problems☆ , 2000 .

[11]  A. Huerta,et al.  Arbitrary Lagrangian–Eulerian Methods , 2004 .

[12]  Luca F. Pavarino,et al.  Multilevel Additive Schwarz Preconditioners for the Bidomain Reaction-Diffusion System , 2008, SIAM J. Sci. Comput..

[13]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[14]  J. Hansen,et al.  Review of some adaptive node-movement techniques in finite-element and finite-difference solutions of partial differential equations , 1991 .

[15]  Xiao-Chuan Cai,et al.  Parallel fully coupled Schwarz preconditioners for saddle point problems. , 2006 .

[16]  Xiao-Chuan Cai,et al.  Scalable parallel methods for monolithic coupling in fluid-structure interaction with application to blood flow modeling , 2010, J. Comput. Phys..

[17]  K. Stüben A review of algebraic multigrid , 2001 .

[18]  Charbel Farhat,et al.  Design and analysis of robust ALE time-integrators for the solution of unsteady flow problems on moving grids , 2004 .

[19]  Jun Zou,et al.  Overlapping Schwarz methods on unstructured meshes using non-matching coarse grids , 1996 .

[20]  L. Pavarino,et al.  Overlapping Schwarz methods for mixed linear elasticity and Stokes problems , 1998 .

[21]  R. Ogden,et al.  A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models , 2000 .

[22]  G. C. Lee.,et al.  Numerical simulation for the propagation of nonlinear pulsatile waves in arteries. , 1992, Journal of biomechanical engineering.

[23]  Homer F. Walker,et al.  Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..

[24]  Simone Scacchi,et al.  A hybrid multilevel Schwarz method for the bidomain model , 2008 .

[25]  Alfio Quarteroni,et al.  Multimodels for Incompressible Flows , 2000 .

[26]  Annalisa Quaini,et al.  Splitting Methods Based on Algebraic Factorization for Fluid-Structure Interaction , 2008, SIAM J. Sci. Comput..

[27]  Paul T. Lin,et al.  Performance of a parallel algebraic multilevel preconditioner for stabilized finite element semiconductor device modeling , 2009, J. Comput. Phys..

[28]  Charles A. Taylor,et al.  A coupled momentum method for modeling blood flow in three-dimensional deformable arteries , 2006 .

[29]  M. Gander,et al.  Why Restricted Additive Schwarz Converges Faster than Additive Schwarz , 2003 .

[30]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[31]  George Em Karniadakis,et al.  A Scalable Domain Decomposition Method for Ultra-Parallel Arterial Flow Simulations † , 2008 .

[32]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[33]  Olof B. Widlund,et al.  BDDC Algorithms for Incompressible Stokes Equations , 2006, SIAM J. Numer. Anal..

[34]  Xiao-Chuan Cai,et al.  Additive Schwarz algorithms for parabolic convection-diffusion equations , 1991 .