Simulation of fluid-solid coexistence in finite volumes: a method to study the properties of wall-attached crystalline nuclei.

The Asakura-Oosawa model for colloid-polymer mixtures is studied by Monte Carlo simulations at densities inside the two-phase coexistence region of fluid and solid. Choosing a geometry where the system is confined between two flat walls, and a wall-colloid potential that leads to incomplete wetting of the crystal at the wall, conditions can be created where a single nanoscopic wall-attached crystalline cluster coexists with fluid in the remainder of the simulation box. Following related ideas that have been useful to study heterogeneous nucleation of liquid droplets at the vapor-liquid coexistence, we estimate the contact angles from observations of the crystalline clusters in thermal equilibrium. We find fair agreement with a prediction based on Young's equation, using estimates of interface and wall tension from the study of flat surfaces. It is shown that the pressure versus density curve of the finite system exhibits a loop, but the pressure maximum signifies the "droplet evaporation-condensation" transition and thus has nothing in common with a van der Waals-like loop. Preparing systems where the packing fraction is deep inside the two-phase coexistence region, the system spontaneously forms a "slab state," with two wall-attached crystalline domains separated by (flat) interfaces from liquid in full equilibrium with the crystal in between; analysis of such states allows a precise estimation of the bulk equilibrium properties at phase coexistence.

[1]  J. Nývlt Nucleation , 1991 .

[2]  Eric R Weeks,et al.  The equilibrium intrinsic crystal–liquid interface of colloids , 2009, Proceedings of the National Academy of Sciences.

[3]  Wilson C. K. Poon,et al.  TOPICAL REVIEW: The physics of a model colloid-polymer mixture , 2002 .

[4]  Jong K. Lee,et al.  The equilibrium shape of a particle at macroscopic steps and kinks and the Gibbs-Wulff construction , 1975 .

[5]  J. Indekeu LINE TENSION AT WETTING , 1994 .

[6]  METHODS TO COMPUTE PRESSURE AND WALL TENSION IN FLUIDS CONTAINING HARD PARTICLES , 2011, 1110.1483.

[7]  J J DIJKHUIS,et al.  An observation , 1928, The Journal of Laryngology & Otology.

[8]  P. B. Warren,et al.  Phase Behaviour of Colloid + Polymer Mixtures , 1992 .

[9]  Kurt Binder,et al.  A Guide to Monte Carlo Simulations in Statistical Physics , 2000 .

[10]  M. J. Ruiz-Montero,et al.  Numerical evidence for bcc ordering at the surface of a critical fcc nucleus. , 1995, Physical review letters.

[11]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[12]  Conceptual aspects of line tensions. , 2007, The Journal of chemical physics.

[13]  Kurt Binder,et al.  “Critical clusters” in a supersaturated vapor: Theory and Monte Carlo simulation , 1980 .

[14]  K. Binder,et al.  Simulation of vapor-liquid coexistence in finite volumes: a method to compute the surface free energy of droplets. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  K. Binder,et al.  Does Young's equation hold on the nanoscale? A Monte Carlo test for the binary Lennard-Jones fluid , 2010, 1009.0321.

[16]  K. Binder,et al.  Curvature dependence of surface free energy of liquid drops and bubbles: A simulation study. , 2010, The Journal of chemical physics.

[17]  H. Beijeren,et al.  The Roughening Transition , 1987 .

[18]  K. Binder,et al.  Computer simulation studies of finite-size broadening of solid–liquid interfaces: from hard spheres to nickel , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  Prosper Matković,et al.  Physical Metallurgy I , 2009 .

[20]  Binder,et al.  Monte Carlo studies of anisotropic surface tension and interfacial roughening in the three-dimensional Ising model. , 1989, Physical review. B, Condensed matter.

[21]  Dietrich Stauffer,et al.  Statistical theory of nucleation, condensation and coagulation , 1976 .

[22]  Kurt Binder,et al.  Universal critical behavior of curvature-dependent interfacial tension. , 2011, Physical review letters.

[23]  Reinhard Lipowsky,et al.  Liquid Bridges in Chemically Structured Slit Pores , 2001 .

[24]  Dirk G. A. L. Aarts,et al.  Direct Visual Observation of Thermal Capillary Waves , 2004, Science.

[25]  K. Binder,et al.  A Guide to Monte Carlo Simulations in Statistical Physics: Preface , 2005 .

[26]  Kurt Binder,et al.  Theory of first-order phase transitions , 1987 .

[27]  Daan Frenkel,et al.  Crystallization of weakly charged colloidal spheres: a numerical study , 2002 .

[28]  K. Binder,et al.  Monte Carlo test of the classical theory for heterogeneous nucleation barriers. , 2009, Physical review letters.

[29]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[30]  R. Becker,et al.  Kinetische Behandlung der Keimbildung in übersättigten Dämpfen , 1935 .

[31]  D. Turnbull Formation of Crystal Nuclei in Liquid Metals , 1950 .

[32]  H. Löwen,et al.  Heterogeneous crystallization of hard-sphere colloids near a wall , 2011 .

[33]  J. E. Burke,et al.  RECRYSTALLIZATION AND GRAIN GROWTH , 1952 .

[34]  K. Binder,et al.  Monte Carlo simulations of the solid-liquid transition in hard spheres and colloid-polymer mixtures. , 2010, The Journal of chemical physics.

[35]  D. Holland-Moritz,et al.  Colloids as model systems for metals and alloys: a case study of crystallization , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  Berend Smit,et al.  Molecular Dynamics Simulations , 2002 .

[37]  W. L Winterbottom,et al.  Equilibrium shape of a small particle in contact with a foreign substrate , 1967 .

[38]  D. Bonn,et al.  Wetting and Spreading , 2009 .

[39]  D. Bonn,et al.  Life at ultralow interfacial tension: wetting, waves and droplets in demixed colloid-polymer mixtures , 2008 .

[40]  M. Dijkstra,et al.  Entropic wetting and many-body induced layering in a model colloid-polymer mixture. , 2002, Physical review letters.

[41]  K. Binder,et al.  Heterogeneous nucleation at a wall near a wetting transition: a Monte Carlo test of the classical theory , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[42]  P. Steinhardt,et al.  Bond-orientational order in liquids and glasses , 1983 .

[43]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[44]  Fumio Oosawa,et al.  Interaction between particles suspended in solutions of macromolecules , 1958 .

[45]  M. Dijkstra,et al.  Phase diagram of highly asymmetric binary hard-sphere mixtures. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[46]  G. Jackson,et al.  Detailed examination of the calculation of the pressure in simulations of systems with discontinuous interactions from the mechanical and thermodynamic perspectives , 2006 .

[47]  Kurt Binder,et al.  Hard sphere fluids at a soft repulsive wall: a comparative study using Monte Carlo and density functional methods. , 2011, The Journal of chemical physics.

[48]  Kurt Binder,et al.  Two-phase equilibria and nucleation barriers near a critical point , 1982 .

[49]  P. Tarazona,et al.  Line tension effects in heterogeneous nucleation theory , 1981 .

[50]  T. Palberg,et al.  Microscopic investigations of homogeneous nucleation in charged sphere suspensions. , 2005, The Journal of chemical physics.

[51]  R. K. P. Zia,et al.  The summertop construction: Crystals in a corner , 1988 .

[52]  David A. Weitz,et al.  Visualizing dislocation nucleation by indenting colloidal crystals , 2006, Nature.

[53]  Poon,et al.  Phase behavior of a model colloid-polymer mixture. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[54]  Andrew Schofield,et al.  Real-Space Imaging of Nucleation and Growth in Colloidal Crystallization , 2001, Science.

[55]  H. C. Andersen,et al.  Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids , 1971 .

[56]  J. Avron,et al.  Total surface energy and equilibrium shapes: Exact results for the d=2 Ising crystal , 1982 .

[57]  Fumio Oosawa,et al.  On Interaction between Two Bodies Immersed in a Solution of Macromolecules , 1954 .

[58]  D. Frenkel,et al.  Solid-liquid interfacial free energy of small colloidal hard-sphere crystals , 2003 .

[59]  Kurt Binder,et al.  A Guide to Monte Carlo Simulations in Statistical Physics: Frontmatter , 2009 .

[60]  K. Binder,et al.  Polymer nanodroplets forming liquid bridges in chemically structured slit pores: a computer simulation. , 2004, The Journal of chemical physics.

[61]  A. Vrij,et al.  Polymers at Interfaces and the Interactions in Colloidal Dispersions , 1976 .

[62]  H. Eyring Structure and properties of solid surfaces , 1954 .

[63]  P. Pusey,et al.  Phase Transition of Spherical Colloids , 1995 .

[64]  Capillary freezing or complete wetting of hard spheres in a planar hard slit? , 2004, Physical review letters.

[65]  J. Langer Statistical theory of the decay of metastable states , 1969 .