A High-Order Difference Scheme for the Generalized Cattaneo Equation

[1]  Jichun Li,et al.  Finite Difference Methods for Elliptic Equations , 2008 .

[2]  H. Qi,et al.  Solutions of the space-time fractional Cattaneo diffusion equation , 2011 .

[3]  A. Compte,et al.  The generalized Cattaneo equation for the description of anomalous transport processes , 1997 .

[4]  Zaid M. Odibat,et al.  Generalized Taylor's formula , 2007, Appl. Math. Comput..

[5]  Y. Povstenko Fractional Cattaneo-Type Equations and Generalized Thermoelasticity , 2011 .

[6]  Zakari,et al.  Equations of state and transport equations in viscous cosmological models. , 1993, Physical review. D, Particles and fields.

[7]  Zhi‐zhong Sun,et al.  A compact difference scheme for the fractional diffusion-wave equation , 2010 .

[8]  Godoy,et al.  From the quantum random walk to classical mesoscopic diffusion in crystalline solids. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  J. C. López-Marcos A difference scheme for a nonlinear partial integrodifferential equation , 1990 .

[10]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[11]  Tao Tang,et al.  A note on collocation methods for Volterra integro-differential equations with weakly singular kernels , 1993 .

[12]  Tadeusz Kosztolowicz,et al.  Hyperbolic subdiffusive impedance , 2008, 0807.2003.

[13]  Mingrong Cui,et al.  Compact finite difference method for the fractional diffusion equation , 2009, J. Comput. Phys..

[14]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[15]  Mehdi Maerefat,et al.  Explicit and implicit finite difference schemes for fractional Cattaneo equation , 2010, J. Comput. Phys..

[16]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[17]  Fawang Liu,et al.  New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..

[18]  Fermín Navarrina,et al.  A mathematical model and a numerical model for hyperbolic mass transport in compressible flows , 2008 .

[19]  M. Meerschaert,et al.  Finite difference approximations for two-sided space-fractional partial differential equations , 2006 .

[20]  Zhi-Zhong Sun,et al.  A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..

[21]  Tao Tang,et al.  Superconvergence of numerical solutions to weakly singular Volterra integro-differential equations , 1992 .

[22]  D. Tzou A Unified Field Approach for Heat Conduction From Macro- to Micro-Scales , 1995 .

[23]  G. Lebon,et al.  Extended irreversible thermodynamics , 1993 .

[24]  I. Podlubny Fractional differential equations , 1998 .

[25]  Tao Tang,et al.  A finite difference scheme for partial integro-differential equations with a weakly singular kernel , 1993 .

[26]  Santos B. Yuste,et al.  An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..

[27]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .