Use of an AC electric field in galvanotactic on/off switching of the motion of a microstructure blotted by Serratia marcescens

In this study, we manipulated the swimming direction of bacteria and controlled the switching off movement by using dc and ac galvanotaxis. The microstructures blotted by Serratia marcescens could be spontaneously manipulated and switched off at the desired position. The optimum ac frequency for switching off the microstructural motion was 7 Hz. We built a mathematical model to analyze and understand the oscillating motion of microstructure.

[1]  M. Simon,et al.  Flagellar rotation and the mechanism of bacterial motility , 1974, Nature.

[2]  U. Peil Engineering vibrations , 2008 .

[3]  B. Behkam,et al.  Bacterial flagella-based propulsion and on/off motion control of microscale objects , 2007 .

[4]  Min Jun Kim,et al.  Galvanotactic and phototactic control of Tetrahymena pyriformis as a microfluidic workhorse , 2009 .

[5]  J. Adler,et al.  Effect of the surface composition of motile Escherichia coli and motile Salmonella species on the direction of galvanotaxis , 1996, Journal of bacteriology.

[6]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[7]  George J. Pappas,et al.  Electrokinetic and optical control of bacterial microrobots , 2011 .

[8]  T. Powers,et al.  The hydrodynamics of swimming microorganisms , 2008, 0812.2887.

[9]  S. Eykyn Microbiology , 1950, The Lancet.

[10]  P Alexander,et al.  A semiempirical approach to a viscously damped oscillating sphere , 2005 .

[11]  F. Fajardo,et al.  Motion of a damped oscillating sphere as a function of the medium viscosity , 2009 .

[12]  E. Meyhöfer,et al.  Nanomechanical model of microtubule translocation in the presence of electric fields. , 2008, Biophysical journal.

[13]  Karen A. Fahrner,et al.  Control of direction of flagellar rotation in bacterial chemotaxis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[14]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[15]  Yuichi Hiratsuka,et al.  A microrotary motor powered by bacteria , 2006, Proceedings of the National Academy of Sciences.

[16]  M. J. Kim,et al.  Visualization of flagellar interactions on bacterial , 2009 .

[17]  H. Berg,et al.  Moving fluid with bacterial carpets. , 2004, Biophysical journal.

[18]  K. Thormann,et al.  Tuning the flagellar motor. , 2010, Microbiology.

[19]  I. Aranson,et al.  Swimming bacteria power microscopic gears , 2009, Proceedings of the National Academy of Sciences.

[20]  H. Berg The rotary motor of bacterial flagella. , 2003, Annual review of biochemistry.

[21]  M. J. Kim,et al.  Control of microfabricated structures powered by flagellated bacteria using phototaxis , 2007 .

[22]  S. Martel,et al.  Controlled manipulation and actuation of micro-objects with magnetotactic bacteria , 2006 .