Staggered Grid Residual Distribution Scheme for Lagrangian Hydrodynamics

This paper is focused on the residual distribution (RD) interpretation of the Dobrev, Kolev, and Rieben scheme [SIAM J. Sci. Comput., 34 (2012), pp. B606--B641] for the numerical solution of the Euler equations in Lagrangian form. The first ingredient of the original scheme is the staggered grid formulation which uses continuous node-based finite element approximations for the kinematic variables and cell-centered discontinuous finite elements for the thermodynamic parameters. The second ingredient of the Dobrev et al. scheme is an artificial viscosity technique applied in order to make possible the computation of strong discontinuities. The aim of this paper is to provide an efficient mass matrix diagonalization method in order to avoid the inversion of the global sparse mass matrix while keeping all the accuracy properties and to construct a parameter-free stabilization of the scheme to get rid of the artificial viscosity. In addition, we study the conservation and entropy properties of the constructed ...

[1]  Michael Dumbser,et al.  Arbitrary-Lagrangian-Eulerian One-Step WENO Finite Volume Schemes on Unstructured Triangular Meshes , 2013, 1302.3076.

[2]  Rémi Abgrall,et al.  Construction of very high order residual distribution schemes for steady inviscid flow problems on hybrid unstructured meshes , 2011, J. Comput. Phys..

[3]  Rémi Abgrall,et al.  Explicit Runge-Kutta residual distribution schemes for time dependent problems: Second order case , 2010, J. Comput. Phys..

[4]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[5]  Ely M. Gelbard,et al.  Methods in Computational Physics, Vol. I , 1964 .

[6]  Rémi Abgrall,et al.  A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..

[7]  Nathaniel R. Morgan,et al.  A Lagrangian discontinuous Galerkin hydrodynamic method , 2018 .

[8]  W. F. Noh Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .

[9]  Richard Liska,et al.  Comparison of Several Difference Schemes on 1D and 2D Test Problems for the Euler Equations , 2003, SIAM J. Sci. Comput..

[10]  M. Shashkov,et al.  The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy , 1998 .

[11]  A. J. Barlow,et al.  A compatible finite element multi‐material ALE hydrodynamics algorithm , 2008 .

[12]  Pierre-Henri Maire,et al.  Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: From first-order to high-orders. Part I: The one-dimensional case , 2015, J. Comput. Phys..

[13]  Rémi Abgrall,et al.  Some Remarks About Conservation for Residual Distribution Schemes , 2017, Comput. Methods Appl. Math..

[14]  Rémi Abgrall,et al.  High Order Fluctuation Schemes on Triangular Meshes , 2003, J. Sci. Comput..

[15]  Michael Dumbser,et al.  High order cell-centered Lagrangian-type finite volume schemes with time-accurate local time stepping on unstructured triangular meshes , 2014, J. Comput. Phys..

[16]  Nathaniel R. Morgan,et al.  A 3D finite element ALE method using an approximate Riemann solution , 2017 .

[17]  Rémi Abgrall,et al.  A general framework to construct schemes satisfying additional conservation relations. Application to entropy conservative and entropy dissipative schemes , 2017, J. Comput. Phys..

[18]  William J. Rider,et al.  Arbitrary Lagrangian-Eulerian methods for modeling high-speed compressible multimaterial flows , 2016, J. Comput. Phys..

[19]  Rémi Abgrall,et al.  High-order residual distribution scheme for the time-dependent Euler equations of fluid dynamics , 2018, Comput. Math. Appl..

[20]  L Howarth Similarity and Dimensional Methods in Mechanics , 1960 .

[21]  Tzanio V. Kolev,et al.  High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics , 2012, SIAM J. Sci. Comput..

[22]  Chi-Wang Shu,et al.  A high order ENO conservative Lagrangian type scheme for the compressible Euler equations , 2007, J. Comput. Phys..

[23]  Pierre-Henri Maire,et al.  Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: From first-order to high-orders. Part II: The two-dimensional case , 2016, J. Comput. Phys..

[24]  Remi Abgrall,et al.  A high-order nonconservative approach for hyperbolic equations in fluid dynamics , 2017, Computers & Fluids.

[25]  Thomas J. R. Hughes,et al.  Stabilized shock hydrodynamics: I. A Lagrangian method , 2007 .

[26]  Nathaniel R. Morgan,et al.  A Lagrangian staggered grid Godunov-like approach for hydrodynamics , 2014, J. Comput. Phys..

[27]  Michael Dumbser,et al.  Arbitrary-Lagrangian–Eulerian ADER–WENO finite volume schemes with time-accurate local time stepping for hyperbolic conservation laws , 2014, 1402.6897.

[28]  Michael Dumbser,et al.  A direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D , 2014, J. Comput. Phys..

[29]  Rao V. Garimella,et al.  A comparative study of interface reconstruction methods for multi-material ALE simulations , 2010 .

[30]  Philip M. Gresho,et al.  On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .

[31]  Chi-Wang Shu,et al.  Positivity-preserving Lagrangian scheme for multi-material compressible flow , 2014, J. Comput. Phys..

[32]  Rémi Abgrall,et al.  A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids , 2014, J. Comput. Phys..