Kapitza resistance of Si/SiO2 interface

A phonon wave packet dynamics method is used to characterize the Kapitza resistance of a Si/SiO2 interface in a Si/SiO2/Si heterostructure. By varying the thickness of SiO2 layer sandwiched between two Si layers, we determine the Kapitza resistance for the Si/SiO2 interface from both wave packet dynamics and a direct, non-equilibrium molecular dynamics approach. The good agreement between the two methods indicates that they have each captured the anharmonic phonon scatterings at the interface. Moreover, detailed analysis provides insights as to how individual phonon mode scatters at the interface and their contribution to the Kapitza resistance.

[1]  Takanobu Watanabe,et al.  SiO2/Si interface structure and its formation studied by large-scale molecular dynamics simulation , 2004 .

[2]  Fabrizio Cleri,et al.  Thermal boundary resistance at silicon-silica interfaces by molecular dynamics simulations , 2012 .

[3]  M. I. Ojovan Ordering and structural changes at the glass–liquid transition , 2013 .

[4]  Jian-Sheng Wang,et al.  Single-mode phonon transmission in symmetry-broken carbon nanotubes: Role of phonon symmetries , 2008, 0807.4212.

[5]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[6]  Natalio Mingo,et al.  Lattice thermal conductivity of silicon from empirical interatomic potentials , 2005 .

[7]  G. Subbarayan,et al.  Estimating Kapitza resistance between Si-SiO2 interface using molecular dynamics simulations , 2008, 2008 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems.

[8]  D. Hurley,et al.  Measurement of the Kapitza resistance across a bicrystal interface , 2011 .

[9]  Julian D. Gale,et al.  GULP: A computer program for the symmetry-adapted simulation of solids , 1997 .

[10]  C. Kimmer,et al.  Scattering of phonons from a high-energy grain boundary in silicon : Dependence on angle of incidence , 2007 .

[11]  Teruaki Motooka,et al.  Interatomic potential for Si–O systems using Tersoff parameterization , 2007 .

[12]  Iwao Ohdomari,et al.  Novel Interatomic Potential Energy Function for Si, O Mixed Systems , 1999 .

[13]  D. Cahill,et al.  Phonon-defect scattering in doped silicon by molecular dynamics simulation , 2008 .

[14]  Jie Chen,et al.  Thermal Contact Resistance Across Nanoscale Silicon Dioxide and Silicon Interface , 2012 .

[15]  A. McGaughey,et al.  Nanostructure thermal conductivity prediction by Monte Carlo sampling of phonon free paths , 2012 .

[16]  Sorin Cristoloveanu,et al.  Frontiers of silicon-on-insulator , 2003 .

[17]  Ronggui Yang,et al.  Effect of lattice mismatch on phonon transmission and interface thermal conductance across dissimilar material interfaces , 2012 .

[18]  A. Majumdar,et al.  Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization , 2001 .

[19]  T. Borca-Tasciuc,et al.  Phonon engineering in nanostructures for solid-state energy conversion , 2000 .

[20]  J. Kjems Thermal transport in fractal systems , 1992 .

[21]  Simon R. Phillpot,et al.  Kapitza conductance and phonon scattering at grain boundaries by simulation , 2004 .

[22]  S. Phillpot,et al.  Phonon wave-packet dynamics at semiconductor interfaces by molecular-dynamics simulation , 2002 .

[23]  Ming Hu,et al.  Kapitza conductance of silicon–amorphous polyethylene interfaces by molecular dynamics simulations , 2009 .

[24]  Takanobu Watanabe,et al.  Modeling of SiO2/Si(100) interface structure by using extended -Stillinger-Weber potential , 1999 .