Numerical simulation of multiple 3D fracture propagation using arbitrary meshes

This paper describes a mesh-independent finite element based method for propagating fractures in three dimensions. The iterative algorithm automatically grows fractures in a 3D brittle medium represented by an isotropic linear elastic matrix. Growth is controlled by an input failure and propagation criterion. The geometry and mesh are stored separately, and mesh refinement is topologically guided. Propagation results in the modification of crack geometry, as opposed to changes in the mesh, as the arbitrary tetrahedral mesh adapts to the evolving geometry. Stress intensity factors are computed using the volumetric J Integral on a virtual piecewise cylinder. Modal stress intensity factors are computed using the decomposition method. Mesh and cylinder size effects are studied, as is computational efficiency. A through-going crack embedded in a thick slab, and a horizontal and inclined penny-shape crack, are used to validate the accuracy of the method. The predicted stress intensity factors are in good agreement with analytical solutions. For six integration points per tip segment, integration local to single tips, and a cylinder radius that adapts to the local geometric conditions, results agree with analytical solutions with less than 5% deviation from experimental results.

[1]  H. Ishikawa,et al.  J INTEGRAL OF A MIXED MODE CRACK AND ITS APPLICATION , 1980 .

[2]  Ted Belytschko,et al.  Cracking particles: a simplified meshfree method for arbitrary evolving cracks , 2004 .

[3]  W. Weber,et al.  An optimized predictor-corrector scheme for fast 3D crack growth simulations , 2008 .

[4]  David M. Parks,et al.  Application of domain integral methods using tetrahedral elements to the determination of stress intensity factors , 2000 .

[5]  T. K. Hellen On the method of virtual crack extensions , 1975 .

[6]  James F. O'Brien,et al.  Dynamic local remeshing for elastoplastic simulation , 2010, SIGGRAPH 2010.

[7]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[8]  Bhushan Lal Karihaloo,et al.  Comprehensive structural integrity , 2003 .

[9]  Hiroshi Noguchi,et al.  Tension of a plate containing an embedded elliptical crack , 1984 .

[10]  W. C. Cooley,et al.  Mechanics of Brittle Fracture , 1982 .

[11]  Ercan Gürses,et al.  A computational framework of three-dimensional configurational-force-driven brittle crack propagation , 2009 .

[12]  Stéphane Bordas,et al.  An extended finite element library , 2007 .

[13]  Paul A. Wawrzynek,et al.  Experimental observations and numerical predictions of three-dimensional fatigue crack propagation , 1997 .

[14]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[15]  Victor E. Saouma,et al.  Numerical evaluation of 3-D SIF for arbitrary finite element meshes , 1997 .

[16]  G. P. Cherepanov Crack propagation in continuous media , 1967 .

[17]  Kenneth James Versprille Computer-aided design applications of the rational b-spline approximation form. , 1975 .

[18]  K. Shivakumar,et al.  An equivalent domain integral method for three-dimensional mixed-mode fracture problems , 1992 .

[19]  Shigeru Aoki,et al.  Computational accuracy of the Ĵ-integral by the finite-element method , 1990 .

[20]  Jonathan Richard Shewchuk,et al.  Aggressive Tetrahedral Mesh Improvement , 2007, IMR.

[21]  Milan Jirásek,et al.  Nonlocal models for damage and fracture: Comparison of approaches , 1998 .

[22]  Paul A. Wawrzynek,et al.  On the virtual crack extension method for calculating the derivatives of energy release rates for a 3D planar crack of arbitrary shape under mode-I loading , 2001 .

[23]  Paul A. Wawrzynek,et al.  Automated 3‐D crack growth simulation , 2000 .

[24]  René de Borst,et al.  Discrete vs smeared crack models for concrete fracture: bridging the gap , 2004 .

[25]  X. Lin,et al.  Finite element modelling of fatigue crack growth of surface cracked plates , 1999 .

[26]  T. Rabczuk,et al.  Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment , 2008 .

[27]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[28]  H. Si Constrained Delaunay tetrahedral mesh generation and refinement , 2010 .

[29]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[30]  Jean-François Remacle,et al.  Application of the substructured finite element/extended finite element method (S-FE/XFE) to the analysis of cracks in aircraft thin walled structures , 2009 .

[31]  J. C. Jaeger,et al.  Fundamentals of rock mechanics , 1969 .

[32]  D. M. Parks A stiffness derivative finite element technique for determination of crack tip stress intensity factors , 1974 .

[33]  J. Rice,et al.  Elementary engineering fracture mechanics , 1974 .

[34]  Daniel J. Filip,et al.  Procedurally representing lofted surfaces , 1989, IEEE Computer Graphics and Applications.

[35]  K. Stüben A review of algebraic multigrid , 2001 .

[36]  S. Atluri,et al.  CALCULATION OF FRACTURE MECHANICS PARAMETERS FOR AN ARBITRARY THREE-DIMENSIONAL CRACK, BY THE ‘EQUIVALENT DOMAIN INTEGRAL’ METHOD , 1987 .

[37]  David A. Field The legacy of automatic mesh generation from solid modeling , 1995, Comput. Aided Geom. Des..

[38]  Paul A. Wawrzynek,et al.  Arbitrary crack representation using solid modeling , 1993, Engineering with Computers.

[39]  A. Paluszny,et al.  Impact of fracture development on the effective permeability of porous rocks as determined by 2-D discrete fracture growth modeling , 2010 .

[40]  Steven J. Owen,et al.  A Survey of Unstructured Mesh Generation Technology , 1998, IMR.

[41]  B. J. Carter,et al.  The M-Integral for Computing Stress Intensity Factors in Generally Anisotropic Materials , 2005 .

[42]  Hiroshi Okada,et al.  A virtual crack closure-integral method (VCCM) to compute the energy release rates and stress intensity factors based on quadratic tetrahedral finite elements , 2008 .

[43]  R. J. Charles,et al.  Static Fatigue of Glass. II , 1958 .

[44]  W. Boehm,et al.  Bezier and B-Spline Techniques , 2002 .

[45]  C.R.E. de Oliveira,et al.  Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations , 2001 .

[46]  James C. Newman,et al.  Stress-intensity factors for a wide range of semi-elliptical surface cracks in finite-thickness plates , 1979 .

[47]  Robert W. Zimmerman,et al.  Relation between the Mogi and the Coulomb failure criteria , 2005 .

[48]  Leslie Banks-Sills,et al.  Update: Application of the Finite Element Method to Linear Elastic Fracture Mechanics , 1991 .

[49]  Harish Rajaram,et al.  Three dimensional fracture mechanics computations using tetrahedral finite elements , 1999 .

[50]  A. R. Ingraffea,et al.  3.01 – Finite Element Methods for Linear Elastic Fracture Mechanics , 2003 .

[51]  S. Chan,et al.  On the Finite Element Method in Linear Fracture Mechanics , 1970 .

[52]  F. Erdogan,et al.  On the Crack Extension in Plates Under Plane Loading and Transverse Shear , 1963 .

[53]  J. Shewchuk,et al.  Isosurface stuffing: fast tetrahedral meshes with good dihedral angles , 2007, SIGGRAPH 2007.

[54]  A. Paluszny,et al.  Numerical modeling of discrete multi-crack growth applied to pattern formation in geological brittle media , 2009 .

[55]  Guido Dhondt,et al.  Automatic 3-D crack propagation calculations: a pure hexahedral element approach versus a combined element approach , 2009 .

[56]  Hans Albert Richard,et al.  Development of a new software for adaptive crack growth simulations in 3D structures , 2003 .

[57]  M. Aliabadi,et al.  Decomposition of the mixed-mode J-integral—revisited , 1998 .

[58]  Adriana Paluszny Rodriguez,et al.  Numerical simulation of fracture pattern development and implications for fuid flow , 2009 .

[59]  T. Belytschko,et al.  A three dimensional large deformation meshfree method for arbitrary evolving cracks , 2007 .