Dynamic Averaged Models of VSC-Based HVDC Systems for Electromagnetic Transient Programs

RESUME Les systemes d’haute tension a courant continu (HTCC) bases sur technologies de convertisseur de source de tension (CST) offrent des prometteur opportunites dans une variete de domaines au sein de l'industrie des systemes de puissance en raison de leurs avantages reconnus par rapport aux systemes HTCC classiques bases a convertisseurs de commutation de ligne (CCL). La technologie CST-HTCC combine des convertisseurs de puissance, base sur des IGBT (Insulated Gate Bipolar Transistor), avec des liens au courant continus pour transmettre la puissance dans l'ordre de milliers de megawatts. En plus de controler le flux d'energie entre deux reseaux a courant alternatif, les systemes CST-HTCC peuvent fournir de reseaux faibles et meme des reseaux passifs. Les systemes CST-HTCC presentent une reponse dynamique plus rapide grâce a la methode de modulation de largeur d'impulsions (MLI) en comparaison avec l'operation de commutation de frequence fondamentale des systemes HTCC traditionnels. Representation detaillee des systemes CST-HTCC dans les programmes d’Electromagnetique Transitoire (EMT) comprend la modelisation des valves IGBT et doit normalement utiliser de pas d'integration petit pour representer avec precision les evenements de commutation rapides. Les simulations et les calculs informatiques introduits par les modeles detailles compliquent l'etude des evenements en regime permanent et transitoire mettant en evidence la necessite de developper des modeles plus efficaces qui assurent un comportement similaire de la reponse dynamique. L'objectif de cette these est de developper des modeles moyennes qui reproduit avec precision le comportement statique et dynamique, en plus les transitoires des systemes CST-HTCC dans des programmes de type EMT. Ces modeles simplifies representent la valeur moyenne des reponses des dispositifs de commutation, convertisseurs, et des controles a l'aide de techniques de valeur moyenne, de sources controlees et des fonctions de commutation. Cette these contribue egalement a l'elaboration de modeles CST detailles utilises pour valider les modeles moyenne proposes. Les modeles detailles developpes comprennent convertisseur avec topologies a deux et a trois niveaux et la plus recente topologie du convertisseur modulaire multiniveaux (CMM). Comparaison des differentes topologies de convertisseur approprie pour VSC-HVDC transmission, y compris leurs avantages et leurs limitations, sont egalement discutes.----------ABSTRACT High Voltage Direct Current (HVDC) systems based on Voltage-sourced Converter (VSC) technologies present a bright opportunity in a variety of fields within the power system industry due to their recognized advantages in comparison to conventional line-commutated converter (LCC) based HVDC systems. VSC-HVDC technology combines power converters, based on IGBTs (Insulated Gate Bipolar Transistors), with dc links to transmit power in the order of thousands of megawatts. In addition to controlling power flow between two ac networks, VSC-HVDC systems can supply weak and even passive networks. VSC-HVDC systems present a faster dynamic response thanks to its Pulse-width Modulation (PWM) control in comparison with the fundamental switching frequency operation of traditional HVDC systems. Detailed representation of VSC-HVDC systems in Electro Magnetic Transient (EMT) programs includes the modeling of IGBT valves and must normally use small integration time-steps to accurately represent fast switching events. Computational burden introduced by such a detailed models complicates the study of steady-state and transient events highlighting the need to develop more efficient models that provide similar behavior and dynamic response. The objective of this thesis is to develop, test and validate averaged models to accurately replicate the steady-state, dynamic and transient behavior of VSC-based HVDC systems in EMT-type programs. These simplified models represent the average response of switching devices and converters by using averaging techniques involving controlled sources and switching functions. The work also contributes to the development of detailed VSC models used to validate the proposed average models. The detailed models developed include two- and three-level converter topologies and the most recent Modular Multilevel Converter (MMC) topology. Comparison of different converter topologies suitable to VSC-HVDC transmission, including their advantages and limitations, are also discussed. A control system is implemented based on vector control which permits independent control both active and reactive power (and/or voltage) at each VSC terminal. Available modulation techniques are presented and compared in terms of performance and power quality.

[1]  Jean Mahseredjian,et al.  Detailed and Averaged Models for a 401-Level MMC–HVDC System , 2012 .

[2]  Cassiano Rech,et al.  Hybrid Multilevel Converters: Unified Analysis and Design Considerations , 2007, IEEE Transactions on Industrial Electronics.

[3]  G.B. Gharehpetian,et al.  Modeling of switching and conduction losses in three-phase SPWM VSC using switching function concept , 2005, 2005 IEEE Russia Power Tech.

[4]  Hongyang Huang,et al.  Parameter design principle of the arm inductor in modular multilevel converter based HVDC , 2010, 2010 International Conference on Power System Technology.

[5]  Jos Arrillaga,et al.  High Voltage Direct Current Transmission , 2014 .

[6]  H. Ouquelle,et al.  An average value model-based design of a deadbeat controller for VSC-HVDC transmission link , 2009, 2009 IEEE Power & Energy Society General Meeting.

[7]  Fang Zheng Peng,et al.  Multilevel inverters: a survey of topologies, controls, and applications , 2002, IEEE Trans. Ind. Electron..

[8]  Reza Iravani,et al.  A unified dynamic model and control for the voltage-sourced converter under unbalanced grid conditions , 2006 .

[9]  Reza Iravani,et al.  Space Vector Modulation of Multi-level and Multi-module Converters for High Power Applications , 2009 .

[10]  Liangzhong Yao,et al.  Grid Integration of Large DFIG-Based Wind Farms Using VSC Transmission , 2007, IEEE Transactions on Power Systems.

[11]  Reza Iravani,et al.  Dynamic performance of a modular multilevel back-to-back HVDC system , 2010, 2011 IEEE Power and Energy Society General Meeting.

[12]  K. Siri,et al.  Simulation of large distributed DC power systems using averaged modelling techniques and the Saber simulator , 1994, Proceedings of 1994 IEEE Applied Power Electronics Conference and Exposition - ASPEC'94.

[13]  R. Iravani,et al.  A generalized state-space averaged model of the three-level NPC converter for systematic DC-voltage-balancer and current-controller design , 2005, IEEE Transactions on Power Delivery.

[14]  D. Jovcic Interconnecting offshore wind farms using multiterminal VSC-based HVDC , 2006, 2006 IEEE Power Engineering Society General Meeting.

[15]  Gengyin Li,et al.  Decoupling Control for Multiterminal VSC-HVDC Based Wind Farm Interconnection , 2007, 2007 IEEE Power Engineering Society General Meeting.

[16]  Temesgen Mulugeta Haileselassie Control of Multi-terminal VSC-HVDC Systems , 2008 .

[17]  Rainer Marquardt,et al.  An innovative modular multilevel converter topology suitable for a wide power range , 2003, 2003 IEEE Bologna Power Tech Conference Proceedings,.

[18]  Lie Xu,et al.  Reduced switching-frequency modulation and circulating current suppression for modular multilevel converters , 2012, PES T&D 2012.

[19]  J. Jatskevich,et al.  Dynamic Averaged and Simplified Models for MMC-Based HVDC Transmission Systems , 2013, IEEE Transactions on Power Delivery.

[20]  Lie Xu,et al.  Topologies for VSC transmission , 2001 .

[21]  J. A. Barrena,et al.  Modulation of Modular Multilevel Converter for HVDC application , 2010, Proceedings of 14th International Power Electronics and Motion Control Conference EPE-PEMC 2010.

[22]  Jean Mahseredjian,et al.  On a new approach for the simulation of transients in power systems , 2007 .

[23]  J A Martinez,et al.  Definitions and Applications of Dynamic Average Models for Analysis of Power Systems , 2010, IEEE Transactions on Power Delivery.

[24]  Lennart Harnefors,et al.  VSC-HVDC Transmission with Cascaded Two-Level Converters , 2010 .

[25]  U N Gnanarathna,et al.  Efficient Modeling of Modular Multilevel HVDC Converters (MMC) on Electromagnetic Transient Simulation Programs , 2011, IEEE Transactions on Power Delivery.

[26]  Hans-Peter Nee,et al.  On dynamics and voltage control of the Modular Multilevel Converter , 2009, 2009 13th European Conference on Power Electronics and Applications.

[27]  H. Akagi,et al.  PWM control and experiment of modular multilevel converters , 2008, 2008 IEEE Power Electronics Specialists Conference.

[28]  P. Cartwright,et al.  VSC transmission operating under unbalanced AC conditions - analysis and control design , 2005, IEEE Transactions on Power Delivery.

[29]  Antonio G. M. Strollo,et al.  A new IGBT circuit model for SPICE simulation , 1997, PESC97. Record 28th Annual IEEE Power Electronics Specialists Conference. Formerly Power Conditioning Specialists Conference 1970-71. Power Processing and Electronic Specialists Conference 1972.

[30]  D. Retzmann,et al.  A new Multilevel Voltage-Sourced Converter Topology for HVDC Applications , 2008 .

[31]  Tore Undeland,et al.  Multi-Terminal VSC-HVDC System for Integration of Offshore Wind Farms and Green Electrification of Platforms in the North Sea , 2008 .

[32]  Cuiqing Du VSC-HVDC for Industrial Power Systems , 2007 .

[33]  D. Retzmann,et al.  Prospects of multilevel VSC technologies for power transmission , 2008, 2008 IEEE/PES Transmission and Distribution Conference and Exposition.

[34]  Marian P. Kazmierkowski,et al.  Current control techniques for three-phase voltage-source PWM converters: a survey , 1998, IEEE Trans. Ind. Electron..

[35]  V. K. Sood,et al.  HVDC and FACTS Controllers: Applications of Static Converters in Power Systems , 2004 .

[36]  George C. Verghese,et al.  Synthesis of averaged circuit models for switched power converters , 1991 .

[37]  Zheng Xu,et al.  Impact of Sampling Frequency on Harmonic Distortion for Modular Multilevel Converter , 2011, IEEE Transactions on Power Delivery.

[38]  Kwa-Sur Tam,et al.  Functional models for space power electronic circuits , 1995 .

[39]  Ke Li,et al.  New Technologies of Modular Multilevel Converter for VSC-HVDC Application , 2010, 2010 Asia-Pacific Power and Energy Engineering Conference.

[40]  Kwanghee Nam,et al.  A DC-link voltage balancing algorithm for 3-level converter using the zero sequence current , 1999, 30th Annual IEEE Power Electronics Specialists Conference. Record. (Cat. No.99CH36321).

[41]  R. Iravani,et al.  Dynamic model and control of the NPC-based back-to-back HVDC system , 2006, IEEE Transactions on Power Delivery.

[42]  Bin Wu,et al.  Multilevel Voltage-Source-Converter Topologies for Industrial Medium-Voltage Drives , 2007, IEEE Transactions on Industrial Electronics.

[43]  Guangfu Tang,et al.  New technologies of voltage source converter (VSC) for HVDC transmission system based on VSC , 2008, 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century.

[44]  H. Saad,et al.  Dynamic performance of average-value models for multi-terminal VSC-HVDC systems , 2012, 2012 IEEE Power and Energy Society General Meeting.

[45]  Geza Joos,et al.  PSPICE simulation of three-phase inverters by means of switching functions , 1994 .

[46]  A. S. Morched,et al.  A universal model for accurate calculation of electromagnetic transients on overhead lines and underground cables , 1999 .

[47]  J. M. Noworolski,et al.  Generalized averaging method for power conversion circuits , 1990, 21st Annual IEEE Conference on Power Electronics Specialists.

[48]  J. Holtz PULSE WIDTH MODULATION FOR ELECTRONIC POWER CONVERSION , 2013 .

[49]  J. G. Slootweg,et al.  Representing wind turbine electrical generating systems in fundamental frequency simulations , 2003 .