Correcteurs proportionnels-intégraux généralisés

For constant linear systems we are introducing integral reconstructors and generalized proportional-integral controllers , which permit to bypass the derivative term in the classic PID controllers and more generally the usual asymptotic observers. Our approach, which is mainly of algebraic flavour, is based on the module-theoretic framework for linear systems and on operational calculus in Mikusinski's setting. Several examples are discussed.

[1]  S. Colombo,et al.  Van der Pol (B.), Bremmer (H.).—Calcul opérationnel basé sur l'intégrale de Laplace. (Operational calculus based on the two-sided Laplace integral) , 1952 .

[2]  L. Pernebo An algebraic theory for design of controllers for linear multivariable systems--Part I: Structure matrices and feedforward design , 1981 .

[3]  CHAPTER III – OPERATORS , 1983 .

[4]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[5]  M. Fliess Some basic structural properties of generalized linear systems , 1991 .

[6]  M. Fliess A remark on Willems' trajectory characterization of linear controllability , 1992 .

[7]  William A. Wolovich Automatic Control Systems: Basic Analysis and Design , 1993 .

[8]  M. Fliess,et al.  Une interprétation algébrique de la transformation de laplace et des matrices de transfert , 1994 .

[9]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[10]  A different look at output tracking: control of a vtol aircraft , 1996, Autom..

[11]  Henri Bourlès,et al.  Finite poles and zeros of linear systems: An intrinsic approach , 1997 .

[12]  Michel Fliess,et al.  Controllability and observability of linear delay systems: an algebraic approach , 1998 .

[13]  Christopher Edwards,et al.  Sliding mode control : theory and applications , 1998 .

[14]  Warren P. Seering,et al.  Comparison of Filtering Methods for Reducing Residual Vibration , 1999, Eur. J. Control.

[15]  Philippe Martin,et al.  A Lie-Backlund approach to equivalence and flatness of nonlinear systems , 1999, IEEE Trans. Autom. Control..

[16]  M. Fliess,et al.  Continuous-time linear predictive control and flatness: A module-theoretic setting with examples , 2000 .

[17]  Brigitte d'Andréa-Novel,et al.  Cours d'automatique : commande linéaire des systèmes dynamiques , 2000 .

[18]  Richard Marquez,et al.  Sliding mode control without state measurements , 2001, 2001 European Control Conference (ECC).

[19]  Marquez Contreras,et al.  A propos de quelques methodes classiques de commande lineaire : commande predictive, correcteurs proportionnels-integraux, predicteurs de smith , 2001 .

[20]  Richard Marquez,et al.  On the generalized pid control of linear dynamic systems , 2001, 2001 European Control Conference (ECC).

[21]  Michel Fliess,et al.  State feedbacks without asymptotic observers and generalized PID regulators , 2001 .

[22]  Michel Fliess,et al.  Generalized PI Sliding Mode Control of DC-to-DC Power Converters , 2001 .

[23]  Richard Marquez,et al.  Pid-like regulators for a class of linear delay systems , 2001, 2001 European Control Conference (ECC).

[24]  Richard Marquez,et al.  An extension of predictive control, PID regulators and Smith predictors to some linear delay systems , 2002 .

[25]  G. Silva-Navarro,et al.  Generalized PID control of the average boost converter circuit model , 2003 .