Genomic analysis of Caenorhabditis elegans reveals ancient families of retroviral-like elements.

Retrotransposons are the most abundant and widespread class of eukaryotic transposable elements. The recent genome sequencing of Caenorhabditis elegans has provided an unprecedented opportunity to analyze the evolutionary relationships among the entire complement of retrotransposons within a multicellular eukaryotic organism. In this article we report the results of an analysis of retroviral-like long terminal repeat retrotransposons in C. elegans that indicate that this class of elements may be even more abundant and divergent than previously expected. The unexpected presence, in C. elegans, of an element displaying a number of characteristics previously thought to be unique to vertebrate retroviruses suggests an ancient lineage for this important class of infectious agents.

[1]  A. Lupas,et al.  Predicting coiled coils from protein sequences , 1991, Science.

[2]  R. Britten,et al.  DNA sequence insertion and evolutionary variation in gene regulation. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[3]  C. Walsh,et al.  Cytosine methylation and the ecology of intragenomic parasites. , 1997, Trends in genetics : TIG.

[4]  M. A. McClure Sequence analysis of eukaryotic retroid proteins , 1992 .

[5]  K. Klimpel,et al.  Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. , 1992, The Journal of biological chemistry.

[6]  Phillip SanMiguel,et al.  The paleontology of intergene retrotransposons of maize , 1998, Nature Genetics.

[7]  M. A. McClure,et al.  Sequence comparisons of retroviral proteins: relative rates of change and general phylogeny. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. McDonald,et al.  Evolution and consequences of transposable elements. , 1993, Current opinion in genetics & development.

[9]  R. Britten,et al.  Mobile elements inserted in the distant past have taken on important functions. , 1997, Gene.

[10]  B. Rost,et al.  Transmembrane helices predicted at 95% accuracy , 1995, Protein science : a publication of the Protein Society.

[11]  I. K. Jordan,et al.  Tempo and mode of Ty element evolution in Saccharomyces cerevisiae. , 1999, Genetics.

[12]  H. Kazazian,et al.  Mobile elements and disease. , 1998, Current opinion in genetics & development.

[13]  V. Solovyev,et al.  Predicting internal exons by oligonucleotide composition and discriminant analysis of spliceable open reading frames. , 1994, Nucleic acids research.

[14]  Roderic D. M. Page,et al.  TreeView: an application to display phylogenetic trees on personal computers , 1996, Comput. Appl. Biosci..

[15]  M. A. McClure,et al.  A Comparative Analysis of Computational Motif-Detection Methods , 1998, Pacific Symposium on Biocomputing.

[16]  Y. Miki Retrotransposal integration of mobile genetic elements in human diseases , 1998, Journal of Human Genetics.

[17]  H. Temin Reverse transcription in the eukaryotic genome: retroviruses, pararetroviruses, retrotransposons, and retrotranscripts. , 1985, Molecular biology and evolution.

[18]  L. Kruckenhauser,et al.  The impact of transposable elements on genome evolution in animals and plants , 1996 .

[19]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[20]  J. Bennetzen,et al.  Nested Retrotransposons in the Intergenic Regions of the Maize Genome , 1996, Science.

[21]  M. A. McClure Evolution of retroposons by acquisition or deletion of retrovirus-like genes. , 1991, Molecular biology and evolution.

[22]  D. Voytas,et al.  Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. , 1998, Genome research.

[23]  F. Müller,et al.  Tas, a retrotransposon from the parasitic nematode Ascaris lumbricoides. , 1994, Gene.

[24]  R. Flavell,et al.  Repetitive DNA and chromosome evolution in plants. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[25]  R. Gaynor,et al.  Regulation of gene expression by HTLV-I Tax protein. , 1998, Methods.

[26]  J. McDonald Transposable elements, gene silencing and macroevolution. , 1998, Trends in ecology & evolution.

[27]  M. A. McClure,et al.  Origins and Evolutionary Relationships of Retroviruses , 1989, The Quarterly Review of Biology.

[28]  T. Eickbush,et al.  Similarity of reverse transcriptase-like sequences of viruses, transposable elements, and mitochondrial introns. , 1988, Molecular biology and evolution.

[29]  P. Trieu-Cuot,et al.  Nucleotide sequence of the transposable element IS15. , 1984, Gene.

[30]  Claude Bazin,et al.  Dynamics and evolution of trans-posable elements , 1996 .

[31]  T. Eickbush,et al.  Pao, a highly divergent retrotransposable element from Bombyx mori containing long terminal repeats with tandem copies of the putative R region. , 1993, Nucleic acids research.

[32]  I. K. Jordan,et al.  Evidence for the Role of Recombination in the Regulatory Evolution of Saccharomyces cerevisiae Ty Elements , 1998, Journal of Molecular Evolution.

[33]  T. Eickbush,et al.  Origin and evolution of retroelements based upon their reverse transcriptase sequences. , 1990, The EMBO journal.

[34]  F. Müller,et al.  Unusual features of the retroid element PAT from the nematode Panagrellus redivivus. , 1992, Nucleic acids research.

[35]  S. Brunak,et al.  SHORT COMMUNICATION Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites , 1997 .

[36]  M. Labrador,et al.  Evolutionary relationships among the members of an ancient class of non-LTR retrotransposons found in the nematode Caenorhabditis elegans. , 1998, Molecular biology and evolution.

[37]  Amos Bairoch,et al.  The PROSITE database, its status in 1999 , 1999, Nucleic Acids Res..

[38]  J. Boeke,et al.  A hotspot for the Drosophila gypsy retroelement in the ovo locus. , 1998, Nucleic acids research.