A complete characterization of irreducible cyclic orbit codes and their Plücker embedding
暂无分享,去创建一个
[1] J. Hirschfeld. Projective Geometries Over Finite Fields , 1980 .
[2] Joachim Rosenthal,et al. Spread codes and spread decoding in network coding , 2008, 2008 IEEE International Symposium on Information Theory.
[3] Anna-Lena Horlemann-Trautmann,et al. Spread decoding in extension fields , 2011, Finite Fields Their Appl..
[4] Natalia Silberstein,et al. Error-Correcting Codes in Projective Spaces Via Rank-Metric Codes and Ferrers Diagrams , 2008, IEEE Transactions on Information Theory.
[5] Frank R. Kschischang,et al. A Rank-Metric Approach to Error Control in Random Network Coding , 2007, IEEE Transactions on Information Theory.
[6] Frank R. Kschischang,et al. Coding for Errors and Erasures in Random Network Coding , 2007, IEEE Transactions on Information Theory.
[7] Alfred Wassermann,et al. Construction of Codes for Network Coding , 2010, ArXiv.
[8] Joachim Rosenthal,et al. Orbit codes — A new concept in the area of network coding , 2010, 2010 IEEE Information Theory Workshop.
[9] W. V. Hodge,et al. Methods of algebraic geometry , 1947 .
[10] Sascha Kurz,et al. Construction of Large Constant Dimension Codes with a Prescribed Minimum Distance , 2008, MMICS.
[11] Joachim Rosenthal,et al. On conjugacy classes of subgroups of the general linear group and cyclic orbit codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.
[12] Rudolf Ahlswede,et al. Network information flow , 2000, IEEE Trans. Inf. Theory.
[13] Frank R. Kschischang,et al. Coding for Errors and Erasures in Random Network Coding , 2008, IEEE Trans. Inf. Theory.
[14] H. Niederreiter,et al. Introduction to finite fields and their applications: Factorization of Polynomials , 1994 .
[15] W. L. Edge. Methods of Algebraic Geometry. By W. V. D. Hodge and D. Pedoe. Vol. I: pp. viii, 440; Vol. II: pp. ix, 394. Paperback edition. 17s. 6d. each volume. (Cambridge.) , 1970 .