Improving the performance of lead-free piezoelectric composites by using polycrystalline inclusions and tuning the dielectric matrix environment

[1]  A. Soh,et al.  On the Constitutive Equations of Magnetoelectroelastic Solids , 2005 .

[2]  J. Bowen,et al.  3D-printed barium titanate/poly-(vinylidene fluoride) nano-hybrids with anisotropic dielectric properties , 2017 .

[3]  Sang‐Jae Kim,et al.  Worm structure piezoelectric energy harvester using ionotropic gelation of barium titanate-calcium alginate composite , 2017 .

[4]  R. Maranganti,et al.  Atomistic determination of flexoelectric properties of crystalline dielectrics , 2009 .

[5]  Ji Hyun Jeong,et al.  Scavenging Biomechanical Energy Using High-Performance, Flexible BaTiO3 Nanocube/PDMS Composite Films , 2017 .

[6]  Yi Xiao,et al.  Numerical Simulation of Effective Properties of 3D Piezoelectric Composites , 2014 .

[7]  Günter,et al.  Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals. , 1994, Physical review. B, Condensed matter.

[8]  Wei Zhu,et al.  3D optical printing of piezoelectric nanoparticle-polymer composite materials. , 2014, ACS nano.

[9]  M. Dressel,et al.  Tuning the dielectric properties of metallic-nanoparticle/elastomer composites by strain. , 2015, Nanoscale.

[10]  T. Lookman,et al.  Accelerated Discovery of Large Electrostrains in BaTiO3‐Based Piezoelectrics Using Active Learning , 2018, Advanced materials.

[11]  Roderick V. N. Melnik,et al.  Generalised solutions, discrete models and energy estimates for a 2D problem of coupled field theory , 2000, Appl. Math. Comput..

[12]  Don Berlincourt,et al.  Elastic and Piezoelectric Coefficients of Single-Crystal Barium Titanate , 1958 .

[13]  Jiangyu Li The effective electroelastic moduli of textured piezoelectric polycrystalline aggregates , 2000 .

[14]  Vladimir Sladek,et al.  Micromechanics determination of effective material coefficients of cement-based piezoelectric ceramic composites , 2017 .

[15]  Fátima Esteban-Betegón,et al.  New Percolative BaTiO3–Ni Composites with a High and Frequency-Independent Dielectric Constant (εr ≈ 80000) , 2001 .

[16]  Christopher R. Bowen,et al.  Modelling and fabrication of porous sandwich layer barium titanate with improved piezoelectric energy harvesting figures of merit , 2017 .

[17]  Chongmin Song,et al.  Micromechanics determination of effective properties of voided magnetoelectroelastic materials , 2016 .

[18]  Yiming Liu,et al.  Single crystal PMN-PT/Epoxy 1-3 composite for energy-harvesting application , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[19]  L. Rodríguez-Tembleque,et al.  MWCNT/epoxy strip-like sensors for buckling detection in beam-like structures , 2018, Thin-Walled Structures.

[20]  A. Constantinescu,et al.  Design and testing of 3D-printed micro-architectured polymer materials exhibiting a negative Poisson’s ratio , 2020 .

[21]  M. C. Tracey,et al.  Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering , 2014 .

[22]  D. Almond,et al.  Breakdown in the Case for Materials with Giant Permittivity , 2017 .

[23]  H. Rodrigues,et al.  Effect of Microstructure and Texture on the Macroscopic Piezoelectric Response of Ferroelectric Barium Titanate and PZN—PT Films , 2009 .

[24]  Xudong Wang,et al.  Piezoelectric nanogenerators—Harvesting ambient mechanical energy at the nanometer scale , 2012 .

[25]  Adolf Acquaye,et al.  Are lead-free piezoelectrics more environmentally friendly? , 2017 .

[26]  Andrew W. Avent,et al.  A new method to determine the un-poled elastic properties of ferroelectric materials , 2017 .

[27]  R. Melnik,et al.  A phase field approach for the fully coupled thermo-electro-mechanical dynamics of nanoscale ferroelectric actuators , 2018 .

[28]  Shashank Priya,et al.  Synthesis mechanism of grain-oriented lead-free piezoelectric Na0.5Bi0.5TiO3–BaTiO3 ceramics with giant piezoelectric response , 2013 .

[29]  Hoejin Kim,et al.  Multifunctional SENSING using 3D printed CNTs/BaTiO3/PVDF nanocomposites , 2018, Journal of Composite Materials.

[30]  Xingyi Huang,et al.  Cellulose/BaTiO3 aerogel paper based flexible piezoelectric nanogenerators and the electric coupling with triboelectricity , 2019, Nano Energy.

[31]  Nicolas Charalambakis,et al.  Homogenization Techniques and Micromechanics. A Survey and Perspectives , 2010 .

[32]  P. Gudmundson,et al.  Length-scale effects on damage development in tensile loading of glass-sphere filled epoxy , 2006 .

[33]  Yirong Lin,et al.  3D Printing of BaTiO3/PVDF Composites with Electric In Situ Poling for Pressure Sensor Applications , 2017 .

[34]  Yongqiang Tan,et al.  Grain-size effects on dielectric and piezoelectric properties of poled BaTiO3 ceramics , 2012 .

[35]  Reconstruction of the domain orientation distribution function of polycrystalline PZT ceramics using vector piezoresponse force microscopy , 2018, Scientific Reports.

[36]  Dong Hyun Kim,et al.  Highly-flexible piezoelectric nanogenerators with silver nanowires and barium titanate embedded composite films for mechanical energy harvesting , 2018, Applied Energy.

[37]  P. Bisegna,et al.  Piezo-Active Composites: Orientation Effects and Anisotropy Factors , 2013 .

[38]  J. Ryu,et al.  Lead-free piezoelectric materials and composites for high power density energy harvesting , 2018, Journal of Materials Research.

[39]  Tahir Cagin,et al.  Dramatic enhancement in energy harvesting for a narrow range of dimensions in piezoelectric nanostructures , 2008 .

[40]  Yirong Lin,et al.  Increased piezoelectric response in functional nanocomposites through multiwall carbon nanotube interface and fused-deposition modeling three-dimensional printing , 2017 .

[41]  Tahir Cagin,et al.  Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect , 2008 .

[42]  I. Babu Highly flexible piezoelectric 0–3 PZT–PDMS composites with high filler content , 2014 .