crumbs and stardust, two genes of Drosophila required for the development of epithelial cell polarity.

Loss-or-function imitations in the Drosophila genes crumbs and stardust are embryonic lethal and cause a breakdown of ectodermally derived epithelia during organogenesis, leading to formation of irregular cell clusters and extensive cell death in some epithelia. The mutant phenotype develops gradually and affects the various epithelia to different extents, crumbs encodes a large transmembrane protein with 30 EGF-like repeats and four laminin A G-domain-like repeats in its extra-cellular domain, suggesting its participation in protein-protein interactions. The crumbs protein is exclusively expressed on the apical membrane of all ectodermally derived epithelia, the tissues affected in crumbs and stardust mutant embryos. The gene function is completely abolished by a crumbs mutation that causes production of a protein with a truncated cytoplasmic domain. Instead of being apically localized as in wild-type, the mutant crumbs protein is diffusely distributed in the cytoplasm; this occurs before any morphologically detectable cellular phenotype is visible, suggesting that targeting of proteins is affected in crumbs mutant embryos. Later, the protein can be detected on the apical and basolateral membranes. Mutations in stardust produce a phenotype nearly identical to that associated with crumbs mutations, suggesting that both genes are functionally related. Double mutant combinations and gene dosage studies suggest that both genes are part of a common genetic pathway, in which stardust acts downstream of crumbs.