An averaging scheme for the efficient approximation of time-periodic flow problems

We study periodic solutions to the Navier-Stokes equations. The transition phase of a dynamic Navier-Stokes solution to the periodic-in-time state can be excessively long and it depends on parameters like the domain size and the viscosity. Several methods for an accelerated identification of the correct initial data that will yield the periodic state exist. They are mostly based on space-time frameworks for directly computing the periodic state or on optimization schemes or shooting methods for quickly finding the correct initial data that yields the periodic solution. They all have a large computational overhead in common. Here we describe and analyze a simple averaging scheme that comes at negligible additional cost. We numerically demonstrate the efficiency and robustness of the scheme for several test-cases and we will theoretically show convergence for the linear Stokes problem.

[1]  Jon Wilkening,et al.  Computation of Time-Periodic Solutions of the Benjamin–Ono Equation , 2008, J. Nonlinear Sci..

[2]  Rolf Rannacher,et al.  On the smoothing property of the crank-nicolson scheme , 1982 .

[3]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[4]  Peter Benner,et al.  An isoperimetric optimal control problem for a non-isothermal chemical reactor with periodic inputs , 2017 .

[5]  Giovanni P. Galdi,et al.  Time-Periodic Solutions to the Navier-Stokes Equations , 2012 .

[6]  C. V. Pao,et al.  Numerical Methods for Time-Periodic Solutions of Nonlinear Parabolic Boundary Value Problems , 2001, SIAM J. Numer. Anal..

[7]  Andreas Potschka,et al.  Newton-Picard Preconditioners for Time-Periodic Parabolic Optimal Control Problems , 2015, SIAM J. Numer. Anal..

[8]  Thomas Richter,et al.  Parallel multigrid method for finite element simulations of complex flow problems on locally refined meshes , 2011, Numer. Linear Algebra Appl..

[9]  Thomas Richter,et al.  Efficient Approximation of Flow Problems With Multiple Scales in Time , 2019, Multiscale Model. Simul..

[10]  Alan R. Champneys,et al.  A Newton-Picard shooting method for computing periodic solutions of large-scale dynamical systems , 1995 .

[11]  T. Richter,et al.  An Optimization Framework for the Computation of Time-Periodic Solutions of Partial Differential Equations , 2018, Vietnam Journal of Mathematics.

[12]  Thomas Richter,et al.  Fluid-structure Interactions , 2017 .

[13]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[14]  Thomas Richter,et al.  Fluid‐Structure Interactions in ALE and Fully Eulerian Coordinates , 2010 .

[15]  Thomas Richter,et al.  Efficient computation of time-periodic solutions of partial differential equations , 2017 .

[16]  R. Rannacher Finite element solution of diffusion problems with irregular data , 1984 .

[17]  Stefan Turek,et al.  Novel Simulation Approaches for Cyclic Steady-state Fixed-bed Processes Exhibiting Sharp Fronts and Shocks , 2005 .

[18]  Lorenz T. Biegler,et al.  Simulation and optimization of pressure-swing adsorption systems for air separation , 2003 .

[19]  Roland Becker,et al.  A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .

[20]  Thomas Richter,et al.  The candy wrapper problem - a temporal multiscale approach for pde/pde systems , 2020, ENUMATH.

[21]  Space-Time Reduced Basis Methods for Time-Periodic Partial Differential Equations , 2012 .

[22]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[23]  Robert Crouch,et al.  Accelerated time integrator for multiple time scale homogenization , 2015 .

[24]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[25]  Andreas Seidel-Morgenstern,et al.  Numerical method for accelerated calculation of cyclic steady state of ModiCon-SMB-processes , 2007, Comput. Chem. Eng..

[26]  T. Wick,et al.  On Time Discretizations of Fluid-Structure Interactions , 2015 .

[27]  Roland Becker,et al.  Multigrid techniques for finite elements on locally refined meshes , 2000 .

[28]  Rolf Rannacher,et al.  ARTIFICIAL BOUNDARIES AND FLUX AND PRESSURE CONDITIONS FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS , 1996 .

[29]  Johannes P. Schlöder,et al.  Newton-Picard-Based Preconditioning for Linear-Quadratic Optimization Problems with Time-Periodic Parabolic PDE Constraints , 2012, SIAM J. Sci. Comput..