Toughness or strength? Regularization in phase-field fracture explained by the coupled criterion

[1]  T. Seelig,et al.  Phase field modeling of Hertzian indentation fracture , 2020 .

[2]  B. Bourdin,et al.  Revisiting nucleation in the phase-field approach to brittle fracture , 2020 .

[3]  G. Molnár,et al.  An open-source Abaqus implementation of the phase-field method to study the effect of plasticity on the instantaneous fracture toughness in dynamic crack propagation , 2020 .

[4]  T. Rabczuk,et al.  Phase field method for quasi-static hydro-fracture in porous media under stress boundary condition considering the effect of initial stress field , 2020, Theoretical and Applied Fracture Mechanics.

[5]  O. Lopez-Pamies,et al.  The phase-field approach to self-healable fracture of elastomers: A model accounting for fracture nucleation at large, with application to a class of conspicuous experiments , 2020 .

[6]  Abhinav Gupta,et al.  An auto-adaptive sub-stepping algorithm for phase-field modeling of brittle fracture , 2020 .

[7]  Jian-Ying Wu,et al.  Comprehensive implementations of phase-field damage models in Abaqus , 2020 .

[8]  A. Sapora,et al.  Nonlinear implementation of Finite Fracture Mechanics: A case study on notched Brazilian disk samples , 2020 .

[9]  Yong Liu,et al.  Discussion on equivalence of the theory of critical distances and the coupled stress and energy criterion for fatigue limit prediction of notched specimens , 2020 .

[10]  W. Becker,et al.  Nonlinear elastic finite fracture mechanics: Modeling mixed-mode crack nucleation in structural glazing silicone sealants , 2019, Materials & Design.

[11]  Chad M. Landis,et al.  A phase-field model for fatigue crack growth , 2019, Journal of the Mechanics and Physics of Solids.

[12]  Chi Wu,et al.  Phase field fracture in elasto-plastic solids: Abaqus implementation and case studies , 2019, Theoretical and Applied Fracture Mechanics.

[13]  J. Yvonnet,et al.  Phase field modeling of interfacial damage in heterogeneous media with stiff and soft interphases , 2019, Engineering Fracture Mechanics.

[14]  Jia Li,et al.  Numerical implementation of the coupled criterion for damaged materials , 2019, International Journal of Solids and Structures.

[15]  D. Leguillon,et al.  Comparison between cohesive zone and coupled criterion modeling of crack initiation in rhombus hole specimens under quasi-static compression , 2019, Theoretical and Applied Fracture Mechanics.

[16]  P. Cornetti,et al.  Finite fracture mechanics and cohesive crack model: Weight functions vs. cohesive laws , 2019, International Journal of Solids and Structures.

[17]  Alain Karma,et al.  Phase-field models for fatigue crack growth , 2018, Theoretical and Applied Fracture Mechanics.

[18]  P. Qiao,et al.  A coupled peridynamic strength and fracture criterion for open-hole failure analysis of plates under tensile load , 2018, Engineering Fracture Mechanics.

[19]  L. De Lorenzis,et al.  On penalization in variational phase-field models of brittle fracture , 2018, Computer Methods in Applied Mechanics and Engineering.

[20]  D. Leguillon,et al.  Comparison between 2D and 3D applications of the coupled criterion to crack initiation prediction in scarf adhesive joints , 2018, International Journal of Adhesion and Adhesives.

[21]  Jian-Ying Wu,et al.  Robust numerical implementation of non-standard phase-field damage models for failure in solids , 2018, Computer Methods in Applied Mechanics and Engineering.

[22]  O. Ševeček,et al.  Understanding the tensile strength of ceramics in the presence of small critical flaws , 2018, Engineering Fracture Mechanics.

[23]  D. Leguillon,et al.  Numerical modeling of the nucleation of facets ahead of a primary crack under mode I + III loading , 2018, International Journal of Fracture.

[24]  Emilio Mart'inez-Paneda,et al.  A phase field formulation for hydrogen assisted cracking , 2018, Computer Methods in Applied Mechanics and Engineering.

[25]  P. Cornetti,et al.  Finite Fracture Mechanics crack initiation from a circular hole , 2018 .

[26]  O. Ševeček,et al.  What is the tensile strength of a ceramic to be used in numerical models for predicting crack initiation? , 2018, International Journal of Fracture.

[27]  D. Leguillon,et al.  3D application of the coupled criterion to crack initiation prediction in epoxy/aluminum specimens under four point bending , 2018, International Journal of Solids and Structures.

[28]  C. Stolz,et al.  Analysis of the failure at notches and cavities in quasi-brittle media using the Thick Level Set damage model and comparison with the coupled criterion , 2018, International Journal of Fracture.

[29]  V. Mantič,et al.  The effect of residual thermal stresses on transverse cracking in cross-ply laminates: an application of the coupled criterion of the finite fracture mechanics , 2018, International Journal of Fracture.

[30]  Thiago Melo Grabois,et al.  On the validation of integrated DIC with tapered double cantilever beam tests , 2017 .

[31]  Stefano Vidoli,et al.  A phenomenological approach to fatigue with a variational phase-field model: The one-dimensional case , 2017 .

[32]  Liang Xia,et al.  Phase field modeling of hydraulic fracturing with interfacial damage in highly heterogeneous fluid-saturated porous media , 2017 .

[33]  Z. Yosibash,et al.  Failure initiation at V-notch tips in quasi-brittle materials , 2017 .

[34]  Anthony Gravouil,et al.  2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture , 2017 .

[35]  Eirik Keilegavlen,et al.  High-accuracy phase-field models for brittle fracture based on a new family of degradation functions , 2017, 1705.04046.

[36]  Xue Zhang,et al.  Numerical evaluation of the phase-field model for brittle fracture with emphasis on the length scale , 2017 .

[37]  K. Ravi-Chandar,et al.  Experimental validation of a phase-field model for fracture , 2017, International Journal of Fracture.

[38]  A. Carpinteri,et al.  Short cracks and V-notches: Finite Fracture Mechanics vs. Cohesive Crack Model , 2016 .

[39]  Julien Yvonnet,et al.  A phase-field method for computational modeling of interfacial damage interacting with crack propagation in realistic microstructures obtained by microtomography , 2016 .

[40]  C. Landis,et al.  Phase-field modeling of hydraulic fracture , 2016 .

[41]  Z. Yosibash,et al.  A 3-D failure initiation criterion from a sharp V-notch edge in elastic brittle structures , 2016 .

[42]  Julien Yvonnet,et al.  Initiation and propagation of complex 3D networks of cracks in heterogeneous quasi-brittle materials: Direct comparison between in situ testing-microCT experiments and phase field simulations , 2016 .

[43]  A. Raina,et al.  Phase field modeling of ductile fracture at finite strains: A variational gradient-extended plasticity-damage theory , 2016 .

[44]  B. J. Carter,et al.  A numerical study of transverse cracking in cross-ply laminates by 3D finite fracture mechanics , 2016 .

[45]  Cv Clemens Verhoosel,et al.  A fracture-controlled path-following technique for phase-field modeling of brittle fracture , 2016 .

[46]  D. Leguillon,et al.  Initiation of edge debonding: coupled criterion versus cohesive zone model , 2016, International Journal of Fracture.

[47]  T. T. Nguyen,et al.  On the choice of parameters in the phase field method for simulating crack initiation with experimental validation , 2016, International Journal of Fracture.

[48]  W. Becker,et al.  A model for brittle failure in adhesive lap joints of arbitrary joint configuration , 2015 .

[49]  Patrick E. Farrell,et al.  Linear and nonlinear solvers for variational phase‐field models of brittle fracture , 2015, 1511.08463.

[50]  Marc Kamlah,et al.  An assessment of the phase field formulation for crack growth , 2015 .

[51]  Michael M. Khonsari,et al.  Validation simulations for the variational approach to fracture , 2015 .

[52]  L. Lorenzis,et al.  Phase-field modeling of ductile fracture , 2015, Computational Mechanics.

[53]  Laura De Lorenzis,et al.  A review on phase-field models of brittle fracture and a new fast hybrid formulation , 2015 .

[54]  A. Chudnovsky Slow crack growth, its modeling and crack-layer approach: A review , 2014 .

[55]  Hans Albert Richard,et al.  Cracks on Mixed Mode loading – Theories, experiments, simulations , 2014 .

[56]  M. Wheeler,et al.  An augmented-Lagrangian method for the phase-field approach for pressurized fractures , 2014 .

[57]  Jean-Jacques Marigo,et al.  Morphogenesis and propagation of complex cracks induced by thermal shocks , 2013 .

[58]  G. Piero A Variational Approach to Fracture and Other Inelastic Phenomena , 2013 .

[59]  J. Réthoré,et al.  Identification of a cohesive zone model from digital images at the micron-scale , 2013 .

[60]  Pietro Cornetti,et al.  Mode mixity and size effect in V-notched structures , 2013 .

[61]  D. Leguillon,et al.  A coupled strength and toughness criterion for the prediction of the open hole tensile strength of a composite plate , 2012 .

[62]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[63]  Eric Lorentz,et al.  Gradient damage models: Toward full-scale computations , 2011 .

[64]  J. Marigo,et al.  Gradient Damage Models and Their Use to Approximate Brittle Fracture , 2011 .

[65]  N. Chevaugeon,et al.  A level set based model for damage growth: The thick level set approach , 2011 .

[66]  Christian Miehe,et al.  A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits , 2010 .

[67]  Christian Miehe,et al.  Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations , 2010 .

[68]  Gianni Royer-Carfagni,et al.  Regularized variational theories of fracture: A unified approach , 2010 .

[69]  J. Marigo,et al.  Approche variationnelle de l'endommagement : I. Les concepts fondamentaux , 2010 .

[70]  Jean-Jacques Marigo,et al.  Approche variationnelle de l'endommagement : II. Les modèles à gradient , 2010 .

[71]  Jean-Jacques Marigo,et al.  Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments , 2009 .

[72]  M. Ayatollahi,et al.  Analysis of a new specimen for mixed mode fracture tests on brittle materials , 2009 .

[73]  Vladislav Mantic,et al.  Interface crack onset at a circular cylindrical inclusion under a remote transverse tension. Application of a coupled stress and energy criterion , 2009 .

[74]  Eric Martin,et al.  Prediction of crack initiation at blunt notches and cavities – size effects , 2007 .

[75]  Carole Henninger,et al.  Crack initiation at a V-notch—comparison between a brittle fracture criterion and the Dugdale cohesive model , 2007 .

[76]  Stéphane Andrieux,et al.  Analysis of non-local models through energetic formulations , 2003 .

[77]  B. Bourdin,et al.  Numerical experiments in revisited brittle fracture , 2000 .

[78]  Mahmoud A. Issa,et al.  Size effects in concrete fracture: Part I, experimental setup and observations , 2000 .

[79]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[80]  M. Frémond,et al.  Damage, gradient of damage and principle of virtual power , 1996 .

[81]  L. Ambrosio,et al.  Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .

[82]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[83]  Sia Nemat-Nasser,et al.  Energy-Release Rate and Crack Kinking Under Combined Loading , 1981 .

[84]  Chien H. Wu Fracture Under Combined Loads by Maximum-Energy-Release-Rate Criterion , 1978 .

[85]  G. Sih Strain-energy-density factor applied to mixed mode crack problems , 1974 .

[86]  F. Erdogan,et al.  On the Crack Extension in Plates Under Plane Loading and Transverse Shear , 1963 .

[87]  D. Leguillon,et al.  Dual-Notch Void Model to Explain the Anisotropic Strengths of 3D Printed Polymers , 2019, Journal of Engineering Materials and Technology.

[88]  K. Volokh Fracture , 2019, Mechanics of Soft Materials.

[89]  Jean-Jacques Marigo,et al.  Crack nucleation in variational phase-field models of brittle fracture , 2018 .

[90]  C. Fagiano,et al.  Damage onset modeling in woven composites based on a coupled stress and energy criterion , 2017 .

[91]  W. Becker,et al.  A review of Finite Fracture Mechanics: crack initiation at singular and non-singular stress raisers , 2016 .

[92]  V. Mantič,et al.  Fiber-size effects on the onset of fiber–matrix debonding under transverse tension: A comparison between cohesive zone and finite fracture mechanics models , 2014 .

[93]  C. Sun,et al.  The Elastic Stress Field around a Crack Tip , 2012 .

[94]  Ahmed Benallal,et al.  Bifurcation and stability issues in gradient theories with softening , 2006 .

[95]  Dominique Leguillon,et al.  Strength or toughness? A criterion for crack onset at a notch , 2002 .

[96]  Z. P. BazÏant,et al.  Size effect on structural strength : a review , 1999 .

[97]  Z. Bažant,et al.  Scaling of quasibrittle fracture: asymptotic analysis , 1997 .

[98]  J. Leblond,et al.  Crack paths in plane situations-II. Detailed form of the expansion of the stress intensity factors. , 1992 .

[99]  S. Usami,et al.  Flaw size dependence in fracture stress of glass and polycrystalline ceramics. , 1985 .

[100]  J. Rice,et al.  Elementary engineering fracture mechanics , 1974 .

[101]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .