A novel falling model for wind speed probability distribution of wind farms

[1]  D. Schindler,et al.  Wind speed distribution selection – A review of recent development and progress , 2019, Renewable and Sustainable Energy Reviews.

[2]  M. Alkhalidi,et al.  Wind energy potential at coastal and offshore locations in the state of Kuwait , 2019, Renewable Energy.

[3]  Han Li,et al.  Determining suitable region wind speed probability distribution using optimal score-radar map , 2019, Energy Conversion and Management.

[4]  D. Schindler,et al.  Sensitivity analysis of the system of wind speed distributions , 2018, Energy Conversion and Management.

[5]  V. Katinas,et al.  An investigation of wind power density distribution at location with low and high wind speeds using statistical model , 2018 .

[6]  D. Schindler,et al.  Introducing a system of wind speed distributions for modeling properties of wind speed regimes around the world , 2017 .

[7]  Jon G. McGowan,et al.  Use of Birnbaum-Saunders distribution for estimating wind speed and wind power probability distributions: A review , 2017 .

[8]  Piotr Wais,et al.  A review of Weibull functions in wind sector , 2017 .

[9]  Piotr Wais,et al.  Two and three-parameter Weibull distribution in available wind power analysis , 2017 .

[10]  S. Rehman,et al.  Wind power characteristics of seven data collection sites in Jubail, Saudi Arabia using Weibull parameters , 2017 .

[11]  D. Schindler,et al.  Global comparison of the goodness-of-fit of wind speed distributions , 2017 .

[12]  Tao Chen,et al.  A mixture kernel density model for wind speed probability distribution estimation , 2016 .

[13]  Kasra Mohammadi,et al.  Evaluating the suitability of wind speed probability distribution models: A case of study of east and southeast parts of Iran , 2016 .

[14]  Talha Arslan,et al.  An alternative distribution to Weibull for modeling the wind speed data: Inverse Weibull distribution , 2016 .

[15]  Pierre Pinson,et al.  Very-Short-Term Probabilistic Wind Power Forecasts by Sparse Vector Autoregression , 2016, IEEE Transactions on Smart Grid.

[16]  Yeliz Mert Kantar,et al.  Analysis of the upper-truncated Weibull distribution for wind speed , 2015 .

[17]  Jianzhou Wang,et al.  Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China , 2015 .

[18]  Nasrudin Abd Rahim,et al.  Environmental impact of wind energy , 2011 .

[19]  Valerio Lo Brano,et al.  Quality of wind speed fitting distributions for the urban area of Palermo, Italy , 2011 .

[20]  J. A. Carta,et al.  A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands , 2009 .

[21]  J. A. Carta,et al.  The use of wind probability distributions derived from the maximum entropy principle in the analysis of wind energy. A case study , 2006 .

[22]  E. El-Saadany,et al.  Grey predictor for wind energy conversion systems output power prediction , 2006, IEEE Transactions on Power Systems.

[23]  W. R. Hargraves,et al.  Methods for Estimating Wind Speed Frequency Distributions. , 1978 .

[24]  Carlos Gershenson,et al.  Wind speed forecasting for wind farms: A method based on support vector regression , 2016 .

[25]  Jie Yu,et al.  Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach , 2014 .

[26]  P. Leahy,et al.  Current methods and advances in forecasting of wind power generation , 2012 .

[27]  LiDeyi,et al.  Study on the Universality of the Normal Cloud Model , 2005 .