Contour integration: Psychophysical, neurophysiological, and computational perspectives

One of the important roles of our visual system is to detect and segregate objects. Neurons in the early visual system extract local image features from the visual scene. To combine these features into separate, global objects, the visual system must perform some kind of grouping operation. One such operation is contour integration. Contours form the outlines of objects, and are the first step in shape perception. We discuss the mechanism of contour integration from psychophysical, neurophysiological, and computational perspectives.

[1]  Kathy T Mullen,et al.  Contour integration in color vision: a common process for the blue–yellow, red–green and luminance mechanisms? , 2000, Vision Research.

[2]  D. V. van Essen,et al.  Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. , 1993, Science.

[3]  J. Gallant,et al.  Identifying natural images from human brain activity , 2008, Nature.

[4]  R. Watt,et al.  Families of models for gabor paths demonstrate the importance of spatial adjacency. , 2008, Journal of vision.

[5]  D. V. van Essen,et al.  Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. , 1992, Journal of neurophysiology.

[6]  H. Bülthoff,et al.  Perceptual Organization of Local Elements into Global Shapes in the Human Visual Cortex , 2003, Current Biology.

[7]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[8]  R. Hess,et al.  Ladder contours are undetectable in the periphery: a crowding effect? , 2007, Journal of vision.

[9]  Robert F Hess,et al.  Impoverished second-order input to global linking in human vision , 2000, Vision Research.

[10]  Zhaoping Li,et al.  Psychophysical Tests of the Hypothesis of a Bottom-Up Saliency Map in Primary Visual Cortex , 2007, PLoS Comput. Biol..

[11]  J. Allman,et al.  Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. , 1985, Annual review of neuroscience.

[12]  B Moulden,et al.  Collator units: second-stage orientational filters. , 1994, Ciba Foundation symposium.

[13]  D. C. Essen,et al.  Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey. , 1996, Journal of neurophysiology.

[14]  S. Kastner,et al.  Neuronal Correlates of Pop-out in Cat Striate Cortex , 1997, Vision Research.

[15]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[16]  Klaus Pawelzik,et al.  Optimality of Human Contour Integration , 2012, PLoS Comput. Biol..

[17]  Serge O. Dumoulin,et al.  Cortical specialization for concentric shape processing , 2007, Vision Research.

[18]  Wilson S. Geisler,et al.  Grouping local orientation and direction signals to extract spatial contours: Empirical tests of “association field” models of contour integration , 2005, Vision Research.

[19]  Zhaoping Li,et al.  A Neural Model of Contour Integration in the Primary Visual Cortex , 1998, Neural Computation.

[20]  Topi Tanskanen,et al.  From local to global: Cortical dynamics of contour integration. , 2008, Journal of vision.

[21]  Suzanne P. McKee,et al.  Constraints on long range interactions mediating contour detection , 1998, Vision Research.

[22]  J. Elder,et al.  Ecological statistics of Gestalt laws for the perceptual organization of contours. , 2002, Journal of vision.

[23]  Zoe Kourtzi,et al.  Shape Saliency Modulates Contextual Processing in the Human Lateral Occipital Complex , 2004, Journal of Cognitive Neuroscience.

[24]  J. Wagemans,et al.  Detection of visual symmetries. , 1995, Spatial vision.

[25]  T. Wiesel,et al.  Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  Zoe Kourtzi,et al.  Spatiotemporal characteristics of form analysis in the human visual cortex revealed by rapid event-related fMRI adaptation , 2005, NeuroImage.

[27]  M. Carandini,et al.  Mapping of stimulus energy in primary visual cortex. , 2005, Journal of neurophysiology.

[28]  Jos B. T. M. Roerdink,et al.  A Neurophysiologically Plausible Population Code Model for Feature Integration Explains Visual Crowding , 2010, PLoS Comput. Biol..

[29]  Robert F. Hess,et al.  Dynamics of contour integration , 2001, Vision Research.

[30]  D. C. Essen,et al.  Neurons in monkey visual area V2 encode combinations of orientations , 2007, Nature Neuroscience.

[31]  C. Gilbert,et al.  Contour Saliency in Primary Visual Cortex , 2006, Neuron.

[32]  C L Baker,et al.  A processing stream in mammalian visual cortex neurons for non-Fourier responses. , 1993, Science.

[33]  W S Geisler,et al.  Physical limits of acuity and hyperacuity. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[34]  William R. Uttal,et al.  Visual form detection in 3-dimensional space , 1983 .

[35]  T. Hendler,et al.  A hierarchical axis of object processing stages in the human visual cortex. , 2001, Cerebral cortex.

[36]  Robert F Hess,et al.  Effects of element separation and carrier wavelength on detection of snakes and ladders: implications for models of contour integration. , 2008, Journal of vision.

[37]  D. Pelli,et al.  The same binding in contour integration and crowding. , 2011, Journal of vision.

[38]  Steven C. Dakin,et al.  Absence of contour linking in peripheral vision , 1997, Nature.

[39]  Gregory Bock,et al.  Higher-order processing in the visual system , 1994 .

[40]  Paul Schrater,et al.  BOLD fMRI and psychophysical measurements of contrast response to broadband images , 2004, Vision Research.

[41]  H. Jones,et al.  Visual cortical mechanisms detecting focal orientation discontinuities , 1995, Nature.

[42]  M Stemmler,et al.  Lateral interactions in primary visual cortex: a model bridging physiology and psychophysics. , 1995, Science.

[43]  C. Gilbert,et al.  On a common circle: natural scenes and Gestalt rules. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[44]  C. Gilbert,et al.  Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys , 1995, Neuron.

[45]  U. Eysel,et al.  Orientation-specific relationship between populations of excitatory and inhibitory lateral connections in the visual cortex of the cat. , 1997, Cerebral cortex.

[46]  D. Heeger,et al.  Neuronal basis of contrast discrimination , 1999, Vision Research.

[47]  Robert F Hess,et al.  Dynamics of snakes and ladders. , 2007, Journal of vision.

[48]  D. V. van Essen,et al.  Response modulation by texture surround in primate area V1: Correlates of “popout” under anesthesia , 1999, Visual Neuroscience.

[49]  D. Fitzpatrick Seeing beyond the receptive field in primary visual cortex , 2000, Current Opinion in Neurobiology.

[50]  J. Smits,et al.  The Perception of Continuous Curves in Dot Stimuli , 1987, Perception.

[51]  Kathy T. Mullen,et al.  Contour integration with colour and luminance contrast , 1996, Vision Research.

[52]  R. Hess,et al.  Modulation of V1 activity by shape: image-statistics or shape-based perception? , 2006, Journal of neurophysiology.

[53]  T. Wiesel,et al.  Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex , 1979, Nature.

[54]  Victor A. F. Lamme The neurophysiology of figure-ground segregation in primary visual cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  C. Blakemore,et al.  Lateral inhibition between orientation detectors in the cat's visual cortex , 2004, Experimental Brain Research.

[56]  A. Sillito,et al.  Spatial organization and magnitude of orientation contrast interactions in primate V1. , 2002, Journal of neurophysiology.

[57]  Keith A May,et al.  Optimal edge filters explain human blur detection. , 2012, Journal of vision.

[58]  S. Edelman,et al.  Human Brain Mapping 6:316–328(1998) � A Sequence of Object-Processing Stages Revealed by fMRI in the Human Occipital Lobe , 2022 .

[59]  Fang Fang,et al.  Perceptual grouping and inverse fMRI activity patterns in human visual cortex. , 2008, Journal of vision.

[60]  C. Gilbert,et al.  Spatial integration and cortical dynamics. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Jean Bennett,et al.  Lateral Connectivity and Contextual Interactions in Macaque Primary Visual Cortex , 2002, Neuron.

[62]  Zhaoping Li A Neural Model of Visual Contour Integration , 1996, NIPS.

[63]  N. Logothetis,et al.  Integration of Local Features into Global Shapes Monkey and Human fMRI Studies , 2003, Neuron.

[64]  Ohad Ben-Shahar,et al.  A Tangent Bundle Theory for Visual Curve Completion , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[65]  C. Gilbert,et al.  Learning to Link Visual Contours , 2008, Neuron.

[66]  O. Reiser,et al.  Principles Of Gestalt Psychology , 1936 .

[67]  C. Connor,et al.  Responses to contour features in macaque area V4. , 1999, Journal of neurophysiology.

[68]  D. Pelli,et al.  Crowding is unlike ordinary masking: distinguishing feature integration from detection. , 2004, Journal of vision.

[69]  Jeffrey S. Perry,et al.  Edge co-occurrence in natural images predicts contour grouping performance , 2001, Vision Research.

[70]  A. Grinvald,et al.  Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[71]  U. Polat,et al.  The architecture of perceptual spatial interactions , 1994, Vision Research.

[72]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[73]  D. Field,et al.  The role of “contrast enhancement” in the detection and appearance of visual contours , 1998, Vision Research.

[74]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[75]  R. Shapley,et al.  The spatial transformation of color in the primary visual cortex of the macaque monkey , 2001, Nature Neuroscience.

[76]  U. Polat Functional architecture of long-range perceptual interactions. , 1999, Spatial vision.

[77]  Steven C. Dakin,et al.  Sparsely distributed contours dominate extra-striate responses to complex scenes , 2008, NeuroImage.

[78]  Paul Schrater,et al.  Shape perception reduces activity in human primary visual cortex , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[79]  J. Nelson,et al.  Intracortical facilitation among co-oriented, co-axially aligned simple cells in cat striate cortex , 2004, Experimental Brain Research.

[80]  R. F Hess,et al.  Contour integration and cortical processing , 2003, Journal of Physiology-Paris.

[81]  P. O. Bishop,et al.  Simple cells in cat striate cortex: responses to stationary flashing and to moving light bars , 1985, Experimental Brain Research.

[82]  R F Hess,et al.  Relationship between facilitation at threshold and suprathreshold contour integration. , 1998, Journal of the Optical Society of America. A, Optics, image science, and vision.

[83]  Martin Wattenberg,et al.  An intuitive model of perceptual grouping for HCI design , 2009, CHI.

[84]  D. Fitzpatrick,et al.  Patterns of excitation and inhibition evoked by horizontal connections in visual cortex share a common relationship to orientation columns , 1995, Neuron.

[85]  P. O. Bishop,et al.  Spatial vision. , 1971, Annual review of psychology.

[86]  Wilson S. Geisler,et al.  The physical limits of grating visibility , 1987, Vision Research.

[87]  I Kovács,et al.  A closed curve is much more than an incomplete one: effect of closure in figure-ground segmentation. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Preeti Verghese,et al.  Collinear facilitation is largely uncertainty reduction. , 2006, Journal of vision.

[89]  U. Polat,et al.  Collinear stimuli regulate visual responses depending on cell's contrast threshold , 1998, Nature.

[90]  J. Hegdé,et al.  Selectivity for Complex Shapes in Primate Visual Area V2 , 2000, The Journal of Neuroscience.

[91]  David J. Field,et al.  Contour integration across depth , 1995, Vision Research.

[92]  W. Geisler Sequential ideal-observer analysis of visual discriminations. , 1989, Psychological review.

[93]  A. Parker,et al.  Cortical mechanisms of binocular stereoscopic vision. , 2001, Progress in brain research.

[94]  Z Li,et al.  Pre-attentive segmentation in the primary visual cortex. , 1998, Spatial vision.

[95]  R F Hess,et al.  Spatial-frequency tuning of visual contour integration. , 1998, Journal of the Optical Society of America. A, Optics, image science, and vision.

[96]  Nikos K. Logothetis,et al.  The Effect of Image Scrambling on Visual Cortical BOLD Activity in the Anesthetized Monkey , 2002, NeuroImage.

[97]  Minami Ito,et al.  Representation of Angles Embedded within Contour Stimuli in Area V2 of Macaque Monkeys , 2004, The Journal of Neuroscience.

[98]  U. Polat,et al.  Lateral interactions between spatial channels: Suppression and facilitation revealed by lateral masking experiments , 1993, Vision Research.

[99]  Z Li,et al.  Contextual influences in V1 as a basis for pop out and asymmetry in visual search. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[100]  J. Nelson,et al.  Orientation-selective inhibition from beyond the classic visual receptive field , 1978, Brain Research.

[101]  Steven C Dakin,et al.  Role of synchrony in contour binding: some transient doubts sustained. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[102]  Victor A. F. Lamme,et al.  Feedforward, horizontal, and feedback processing in the visual cortex , 1998, Current Opinion in Neurobiology.

[103]  U Polat,et al.  Collinear interactions and contour integration. , 2000, Spatial vision.

[104]  Zhaoping Li A saliency map in primary visual cortex , 2002, Trends in Cognitive Sciences.

[105]  Steven C. Dakin,et al.  Flank facilitation and contour integration: Different sites , 2006, Vision Research.

[106]  S. Dakin,et al.  Snakes and ladders: the role of temporal modulation in visual contour integration , 2001, Vision Research.

[107]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[108]  L. Finkel,et al.  Extraction of perceptually salient contours by striate cortical networks , 1998, Vision Research.